Spaces:
Runtime error
Runtime error
Commit
·
4372a92
1
Parent(s):
8da68fd
Fix merged changes
Browse files
app.py
CHANGED
@@ -1,15 +1,10 @@
|
|
1 |
import streamlit as st
|
2 |
-
<<<<<<< HEAD
|
3 |
-
from datasets import load_dataset, Features, Value, Sequence
|
4 |
-
=======
|
5 |
from datasets import load_dataset
|
6 |
-
>>>>>>> 81414ba96ac55f927033c62ee5c2db6c6a22349c
|
7 |
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
8 |
|
9 |
decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 2, 'CONT-REJECTED': 3, 'CONT-ACCEPTED': 4, 'CONT-PENDING': 5}
|
10 |
|
11 |
dataset_dict = load_dataset('HUPD/hupd',
|
12 |
-
<<<<<<< HEAD
|
13 |
name='sample',
|
14 |
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
15 |
icpr_label=None,
|
@@ -26,25 +21,6 @@ tokenizer_abstract = DistilBertTokenizer.from_pretrained('theresatvan/hupd-disti
|
|
26 |
|
27 |
model_claims = DistilBertForSequenceClassification.from_pretrained('theresatvan/hupd-distilbert-claims')
|
28 |
tokenizer_claims = DistilBertTokenizer.from_pretrained('theresatvan/hupd-distilbert-claims')
|
29 |
-
=======
|
30 |
-
name='all',
|
31 |
-
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
32 |
-
icpr_label=None,
|
33 |
-
force_extract=True,
|
34 |
-
train_filing_start_date='2016-01-01',
|
35 |
-
train_filing_end_date='2016-01-01',
|
36 |
-
val_filing_start_date='2017-01-01',
|
37 |
-
val_filing_end_date='2017-05-31',
|
38 |
-
)
|
39 |
-
|
40 |
-
dataset = dataset_dict['validation'].filter(lambda e: e['decision'] in ['REJECTED', 'ACCEPTED'])
|
41 |
-
|
42 |
-
model_abstract = DistilBertForSequenceClassification('theresatvan/hupd-distilbert-abstract')
|
43 |
-
tokenizer_abstract = DistilBertTokenizer('theresatvan/hupd-distilbert-abstract')
|
44 |
-
|
45 |
-
model_claims = DistilBertForSequenceClassification('theresatvan/hupd-distilbert-claims')
|
46 |
-
tokenizer_claims = DistilBertTokenizer('theresatvan/hupd-distilbert-claims')
|
47 |
-
>>>>>>> 81414ba96ac55f927033c62ee5c2db6c6a22349c
|
48 |
|
49 |
|
50 |
def predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input):
|
@@ -75,21 +51,13 @@ if __name__ == '__main__':
|
|
75 |
st.title = "Can I Patent This?"
|
76 |
|
77 |
form = st.form('patent-prediction-form')
|
78 |
-
<<<<<<< HEAD
|
79 |
dropdown = [example['application_number'] for example in dataset]
|
80 |
-
=======
|
81 |
-
dropdown = []
|
82 |
-
>>>>>>> 81414ba96ac55f927033c62ee5c2db6c6a22349c
|
83 |
|
84 |
input_application = form.selectbox('Select a patent\'s application number', patents_dropdown)
|
85 |
submit = form.form_submit_button("Submit")
|
86 |
|
87 |
if submit:
|
88 |
-
<<<<<<< HEAD
|
89 |
input = dataset.filter(lambda e: e['patent_number'] == input_application)
|
90 |
-
=======
|
91 |
-
input = dataset.filter(lambda e: e['application_number'] == input_application)
|
92 |
-
>>>>>>> 81414ba96ac55f927033c62ee5c2db6c6a22349c
|
93 |
|
94 |
label, prob = predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input)
|
95 |
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
from datasets import load_dataset
|
|
|
3 |
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
4 |
|
5 |
decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 2, 'CONT-REJECTED': 3, 'CONT-ACCEPTED': 4, 'CONT-PENDING': 5}
|
6 |
|
7 |
dataset_dict = load_dataset('HUPD/hupd',
|
|
|
8 |
name='sample',
|
9 |
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
10 |
icpr_label=None,
|
|
|
21 |
|
22 |
model_claims = DistilBertForSequenceClassification.from_pretrained('theresatvan/hupd-distilbert-claims')
|
23 |
tokenizer_claims = DistilBertTokenizer.from_pretrained('theresatvan/hupd-distilbert-claims')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input):
|
|
|
51 |
st.title = "Can I Patent This?"
|
52 |
|
53 |
form = st.form('patent-prediction-form')
|
|
|
54 |
dropdown = [example['application_number'] for example in dataset]
|
|
|
|
|
|
|
55 |
|
56 |
input_application = form.selectbox('Select a patent\'s application number', patents_dropdown)
|
57 |
submit = form.form_submit_button("Submit")
|
58 |
|
59 |
if submit:
|
|
|
60 |
input = dataset.filter(lambda e: e['patent_number'] == input_application)
|
|
|
|
|
|
|
61 |
|
62 |
label, prob = predict(model_abstract, model_claims, tokenizer_abstract, tokenizer_claims, input)
|
63 |
|