Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,86 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from langchain.chains import ConversationChain
|
3 |
from langchain.memory import ConversationBufferMemory
|
4 |
-
from
|
|
|
|
|
|
|
5 |
from gtts import gTTS
|
6 |
import tempfile
|
7 |
-
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
conversation = ConversationChain(llm=llm, memory=memory)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def retrieve_relevant_chunks(query, top_k=3):
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def generate_rag_response(query, language="English"):
|
20 |
retrieved_chunks = retrieve_relevant_chunks(query)
|
21 |
context = "\n".join(retrieved_chunks)
|
22 |
prompt = f"""
|
23 |
Please provide the answer in **{language}**.
|
24 |
-
|
25 |
You are a helpful AI assistant providing tourism information about Rajasthan.
|
26 |
Answer based on the following context. If information is unavailable, say "I don't know."
|
27 |
-
|
28 |
Context: {context}
|
29 |
Question: {query}
|
30 |
-
|
31 |
Answer:
|
32 |
"""
|
33 |
response = conversation.run(prompt)
|
34 |
return response.strip()
|
35 |
-
|
36 |
def generate_speech(text, language):
|
37 |
lang_map = {"English": "en", "Hindi": "hi", "Spanish": "es", "French": "fr", "German": "de", "Tamil": "ta"}
|
38 |
lang_code = lang_map.get(language, "en")
|
@@ -40,21 +88,26 @@ def generate_speech(text, language):
|
|
40 |
temp_audio_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
41 |
tts.save(temp_audio_path)
|
42 |
return temp_audio_path
|
43 |
-
|
44 |
def chatbot_interface(query, language, chat_history):
|
45 |
response = generate_rag_response(query, language)
|
46 |
speech_path = generate_speech(response, language)
|
47 |
-
|
48 |
# Just append a π icon and use Gradio to handle the file
|
49 |
response_with_audio = f"{response} π (Click play below)"
|
50 |
chat_history.append((query, response_with_audio))
|
51 |
-
|
52 |
return chat_history, speech_path, "" # Return file path as separate gr.Audio
|
53 |
-
|
54 |
def handle_menu_click(topic, language, chat_history):
|
55 |
query = f"Give me information about {topic} in Rajasthan."
|
56 |
return chatbot_interface(query, language, chat_history)
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Blocks(css="""
|
59 |
body {background-color: #FFF2E1; font-family: Arial, sans-serif;}
|
60 |
.gradio-container {max-width: 800px; margin: auto; padding: 20px; background: #FFF2E1;
|
@@ -70,33 +123,28 @@ with gr.Blocks(css="""
|
|
70 |
font-weight: bold; border-radius: 6px; padding: 5px 10px; cursor: pointer;}
|
71 |
.chat-input {width: 100%; padding: 10px; border-radius: 8px; border: 1px solid #e1c7a6;}
|
72 |
""") as demo:
|
73 |
-
|
74 |
gr.Markdown("<h2 class='gradio-title'>πͺ Rajasthan Tourism Chatbot</h2>")
|
75 |
-
|
76 |
language_selector = gr.Dropdown(language_options, value="English", label="Select Language")
|
77 |
chatbot = gr.Chatbot(label="Rajasthan Tourism Assistant", elem_classes="gradio-chat")
|
78 |
-
|
79 |
with gr.Row():
|
80 |
for topic in menu_options:
|
81 |
btn = gr.Button(topic, elem_classes="gr-button")
|
82 |
btn.click(handle_menu_click,
|
83 |
inputs=[gr.Textbox(value=topic, visible=False), language_selector, chatbot],
|
84 |
-
outputs=[chatbot, gr.
|
85 |
-
|
86 |
query_input = gr.Textbox(placeholder="Ask about Rajasthan...", label="Enter your query", elem_classes="chat-input")
|
87 |
-
|
88 |
-
def process_user_query(query, language, history):
|
89 |
-
updated_chat, _, _ = chatbot_interface(query, language, history)
|
90 |
-
return updated_chat, None, ""
|
91 |
-
|
92 |
audio_output = gr.Audio(label="π Audio Response", type="filepath", visible=True)
|
93 |
-
|
94 |
query_input.submit(
|
95 |
chatbot_interface,
|
96 |
inputs=[query_input, language_selector, chatbot],
|
97 |
-
outputs=[chatbot, audio_output,
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
1 |
+
from langchain_groq import ChatGroq
|
2 |
+
import os
|
3 |
import gradio as gr
|
4 |
from langchain.chains import ConversationChain
|
5 |
from langchain.memory import ConversationBufferMemory
|
6 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
7 |
+
from langchain.document_loaders import PyPDFLoader
|
8 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
9 |
+
from langchain.vectorstores import FAISS
|
10 |
from gtts import gTTS
|
11 |
import tempfile
|
12 |
+
|
13 |
+
# Set your API key from Hugging Face Secrets
|
14 |
+
# DO NOT hardcode your API key here
|
15 |
+
GROQ_API_KEY = os.environ.get('GROQ_API_KEY')
|
16 |
+
|
17 |
+
# Initialize Groq LLM
|
18 |
+
llm = ChatGroq(
|
19 |
+
model_name="llama3-70b-8192",
|
20 |
+
temperature=0.7,
|
21 |
+
api_key=GROQ_API_KEY
|
22 |
+
)
|
23 |
+
|
24 |
+
# Initialize memory
|
25 |
+
memory = ConversationBufferMemory()
|
26 |
conversation = ConversationChain(llm=llm, memory=memory)
|
27 |
+
|
28 |
+
# Load PDF and create embeddings
|
29 |
+
def initialize_rag():
|
30 |
+
try:
|
31 |
+
# Load the PDF document
|
32 |
+
loader = PyPDFLoader("TourismChatbot.pdf")
|
33 |
+
pages = loader.load_and_split()
|
34 |
+
|
35 |
+
# Create embeddings
|
36 |
+
embed_model = FastEmbedEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
37 |
+
|
38 |
+
# Create semantic chunks
|
39 |
+
semantic_chunker = SemanticChunker(embed_model, breakpoint_threshold_type="percentile")
|
40 |
+
semantic_chunks = semantic_chunker.create_documents([d.page_content for d in pages])
|
41 |
+
|
42 |
+
# Create vector store
|
43 |
+
vectorstore = FAISS.from_documents(documents=semantic_chunks, embedding=embed_model)
|
44 |
+
|
45 |
+
return vectorstore, embed_model
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error initializing RAG: {e}")
|
48 |
+
# Return None if initialization fails
|
49 |
+
return None, None
|
50 |
+
|
51 |
+
# Initialize RAG components
|
52 |
+
vectorstore, embed_model = initialize_rag()
|
53 |
+
|
54 |
+
# Function to retrieve relevant information from the vector store
|
55 |
def retrieve_relevant_chunks(query, top_k=3):
|
56 |
+
try:
|
57 |
+
if vectorstore is not None:
|
58 |
+
documents = vectorstore.similarity_search(query, k=top_k)
|
59 |
+
return [doc.page_content for doc in documents]
|
60 |
+
else:
|
61 |
+
# Fallback content if vectorstore is not available
|
62 |
+
return ["Rajasthan is a state in India known for its forts, palaces, and desert landscapes."]
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error retrieving chunks: {e}")
|
65 |
+
return ["Rajasthan is a state in India known for its forts, palaces, and desert landscapes."]
|
66 |
+
|
67 |
def generate_rag_response(query, language="English"):
|
68 |
retrieved_chunks = retrieve_relevant_chunks(query)
|
69 |
context = "\n".join(retrieved_chunks)
|
70 |
prompt = f"""
|
71 |
Please provide the answer in **{language}**.
|
72 |
+
|
73 |
You are a helpful AI assistant providing tourism information about Rajasthan.
|
74 |
Answer based on the following context. If information is unavailable, say "I don't know."
|
75 |
+
|
76 |
Context: {context}
|
77 |
Question: {query}
|
78 |
+
|
79 |
Answer:
|
80 |
"""
|
81 |
response = conversation.run(prompt)
|
82 |
return response.strip()
|
83 |
+
|
84 |
def generate_speech(text, language):
|
85 |
lang_map = {"English": "en", "Hindi": "hi", "Spanish": "es", "French": "fr", "German": "de", "Tamil": "ta"}
|
86 |
lang_code = lang_map.get(language, "en")
|
|
|
88 |
temp_audio_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
|
89 |
tts.save(temp_audio_path)
|
90 |
return temp_audio_path
|
91 |
+
|
92 |
def chatbot_interface(query, language, chat_history):
|
93 |
response = generate_rag_response(query, language)
|
94 |
speech_path = generate_speech(response, language)
|
95 |
+
|
96 |
# Just append a π icon and use Gradio to handle the file
|
97 |
response_with_audio = f"{response} π (Click play below)"
|
98 |
chat_history.append((query, response_with_audio))
|
99 |
+
|
100 |
return chat_history, speech_path, "" # Return file path as separate gr.Audio
|
101 |
+
|
102 |
def handle_menu_click(topic, language, chat_history):
|
103 |
query = f"Give me information about {topic} in Rajasthan."
|
104 |
return chatbot_interface(query, language, chat_history)
|
105 |
+
|
106 |
+
# Define language and menu options
|
107 |
+
language_options = ['English', 'Hindi', 'Spanish', 'French', 'German', 'Tamil']
|
108 |
+
menu_options = ["Places to Visit", "Best Time to Visit", "Festivals", "Cuisine", "Travel Tips"]
|
109 |
+
|
110 |
+
# Create the Gradio interface
|
111 |
with gr.Blocks(css="""
|
112 |
body {background-color: #FFF2E1; font-family: Arial, sans-serif;}
|
113 |
.gradio-container {max-width: 800px; margin: auto; padding: 20px; background: #FFF2E1;
|
|
|
123 |
font-weight: bold; border-radius: 6px; padding: 5px 10px; cursor: pointer;}
|
124 |
.chat-input {width: 100%; padding: 10px; border-radius: 8px; border: 1px solid #e1c7a6;}
|
125 |
""") as demo:
|
126 |
+
|
127 |
gr.Markdown("<h2 class='gradio-title'>πͺ Rajasthan Tourism Chatbot</h2>")
|
128 |
+
|
129 |
language_selector = gr.Dropdown(language_options, value="English", label="Select Language")
|
130 |
chatbot = gr.Chatbot(label="Rajasthan Tourism Assistant", elem_classes="gradio-chat")
|
131 |
+
|
132 |
with gr.Row():
|
133 |
for topic in menu_options:
|
134 |
btn = gr.Button(topic, elem_classes="gr-button")
|
135 |
btn.click(handle_menu_click,
|
136 |
inputs=[gr.Textbox(value=topic, visible=False), language_selector, chatbot],
|
137 |
+
outputs=[chatbot, gr.Audio(label="π Audio Response", type="filepath"), gr.Textbox()])
|
138 |
+
|
139 |
query_input = gr.Textbox(placeholder="Ask about Rajasthan...", label="Enter your query", elem_classes="chat-input")
|
|
|
|
|
|
|
|
|
|
|
140 |
audio_output = gr.Audio(label="π Audio Response", type="filepath", visible=True)
|
141 |
+
|
142 |
query_input.submit(
|
143 |
chatbot_interface,
|
144 |
inputs=[query_input, language_selector, chatbot],
|
145 |
+
outputs=[chatbot, audio_output, query_input]
|
146 |
)
|
147 |
+
|
148 |
+
# Launch the app
|
149 |
+
if __name__ == "__main__":
|
150 |
+
demo.launch(share=True)
|