File size: 1,195 Bytes
5225d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from transformers import RobertaModel, AutoTokenizer
from transformers.modeling_outputs import SequenceClassifierOutput
from huggingface_hub import PyTorchModelHubMixin
from torch.nn import CrossEntropyLoss
import torch.nn as nn
import torch

class SentenceBERTClassifier(nn.Module, PyTorchModelHubMixin):
    def __init__(self, model_name="sentence-transformers/all-distilroberta-v1", num_labels=8):
        super().__init__()
        self.sbert = RobertaModel.from_pretrained(model_name)
        self.config = self.sbert.config
        self.config.num_labels = num_labels
        self.dropout = nn.Dropout(0.05)
        self.config.classifier_dropout = 0.05
        self.classifier = nn.Linear(self.config.hidden_size, self.config.num_labels)

    def forward(self, input_ids, attention_mask):
        outputs = self.sbert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.pooler_output
        dropout_output = self.dropout(pooled_output)
        logits = self.classifier(dropout_output)

        return SequenceClassifierOutput(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )