Terry Zhang
commited on
Commit
·
296146e
1
Parent(s):
b562460
update preprocess structure and model
Browse files- tasks/text.py +9 -35
- tasks/text_models/xgb_pipeline.skops +2 -2
- tasks/utils/text_preprocessor.py +18 -0
tasks/text.py
CHANGED
@@ -4,10 +4,17 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
11 |
|
12 |
router = APIRouter()
|
13 |
|
@@ -20,8 +27,6 @@ models_description = {
|
|
20 |
}
|
21 |
|
22 |
|
23 |
-
|
24 |
-
|
25 |
# Some code borrowed from Nonnormalizable
|
26 |
|
27 |
def baseline_model(dataset_length: int):
|
@@ -31,46 +36,15 @@ def baseline_model(dataset_length: int):
|
|
31 |
return predictions
|
32 |
|
33 |
def tree_classifier(test_dataset: dict, model: str):
|
34 |
-
# Textpreprocessor defined in this scope
|
35 |
-
import nltk
|
36 |
-
from nltk.stem import WordNetLemmatizer
|
37 |
-
from sklearn.base import BaseEstimator, TransformerMixin
|
38 |
-
import nltk
|
39 |
-
import contractions
|
40 |
-
|
41 |
-
# Download required NLTK resources
|
42 |
-
nltk.download('punkt_tab')
|
43 |
-
nltk.download('wordnet')
|
44 |
-
|
45 |
-
# Custom sklearn transformer for preprocessing text
|
46 |
-
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
47 |
-
def __init__(self):
|
48 |
-
self.lemmatizer = WordNetLemmatizer()
|
49 |
-
|
50 |
-
def fit(self, X, y=None):
|
51 |
-
return self
|
52 |
-
|
53 |
-
def transform(self, X):
|
54 |
-
preprocessed_texts = []
|
55 |
-
for doc in X:
|
56 |
-
# Expand contractions
|
57 |
-
expanded = contractions.fix(doc)
|
58 |
-
# Lowercase
|
59 |
-
lowered = expanded.lower()
|
60 |
-
|
61 |
-
# Tokenize and lemmatize
|
62 |
-
lemmatized = " ".join([self.lemmatizer.lemmatize(word) for word in nltk.word_tokenize(lowered)])
|
63 |
-
preprocessed_texts.append(lemmatized)
|
64 |
-
return preprocessed_texts
|
65 |
|
66 |
texts = test_dataset["quote"]
|
67 |
|
|
|
|
|
68 |
model_path = f"tasks/text_models/{model}.skops"
|
69 |
|
70 |
model = load(model_path,
|
71 |
trusted=[
|
72 |
-
'__main__.TextPreprocessor',
|
73 |
-
'nltk.stem.wordnet.WordNetLemmatizer',
|
74 |
'xgboost.core.Booster',
|
75 |
'xgboost.sklearn.XGBClassifier'])
|
76 |
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
7 |
+
# Textpreprocessor defined in this scope
|
8 |
+
import nltk
|
9 |
+
|
10 |
+
# Download required NLTK resources
|
11 |
+
nltk.download('punkt_tab')
|
12 |
+
nltk.download('wordnet')
|
13 |
|
14 |
|
15 |
from .utils.evaluation import TextEvaluationRequest
|
16 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
17 |
+
from .utils.text_preprocessor import preprocess
|
18 |
|
19 |
router = APIRouter()
|
20 |
|
|
|
27 |
}
|
28 |
|
29 |
|
|
|
|
|
30 |
# Some code borrowed from Nonnormalizable
|
31 |
|
32 |
def baseline_model(dataset_length: int):
|
|
|
36 |
return predictions
|
37 |
|
38 |
def tree_classifier(test_dataset: dict, model: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
texts = test_dataset["quote"]
|
41 |
|
42 |
+
texts = preprocess(texts)
|
43 |
+
|
44 |
model_path = f"tasks/text_models/{model}.skops"
|
45 |
|
46 |
model = load(model_path,
|
47 |
trusted=[
|
|
|
|
|
48 |
'xgboost.core.Booster',
|
49 |
'xgboost.sklearn.XGBClassifier'])
|
50 |
|
tasks/text_models/xgb_pipeline.skops
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4199bda604eb153a7416ccb0e320dfa31411ed7fa7cb84f710b575b049ff8cfc
|
3 |
+
size 3278839
|
tasks/utils/text_preprocessor.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk.stem import WordNetLemmatizer
|
3 |
+
import contractions
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
def preprocess(X):
|
8 |
+
lemmatizer = WordNetLemmatizer()
|
9 |
+
preprocessed_texts = []
|
10 |
+
for doc in X:
|
11 |
+
# Expand contractions
|
12 |
+
expanded = contractions.fix(doc)
|
13 |
+
# Lowercase
|
14 |
+
lowered = expanded.lower()
|
15 |
+
# Tokenize and lemmatize
|
16 |
+
lemmatized = " ".join([lemmatizer.lemmatize(word) for word in nltk.word_tokenize(lowered)])
|
17 |
+
preprocessed_texts.append(lemmatized)
|
18 |
+
return preprocessed_texts
|