Terry Zhang
commited on
Commit
·
3b83e0c
1
Parent(s):
243d40e
update code to include tree classifier
Browse files- tasks/text.py +35 -5
- tasks/text_models/.gitattributes +0 -1
- tasks/text_models/xgb_pipeline.skops +0 -3
- tasks/utils/text_preprocessor.py +30 -0
tasks/text.py
CHANGED
@@ -3,8 +3,8 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
-
from skops.hub_utils import download
|
7 |
from skops.io import load
|
|
|
8 |
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
@@ -15,12 +15,40 @@ router = APIRouter()
|
|
15 |
DESCRIPTION = "Random Baseline"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
@router.post(ROUTE, tags=["Text Task"],
|
22 |
description=DESCRIPTION)
|
23 |
-
async def evaluate_text(request: TextEvaluationRequest
|
|
|
24 |
"""
|
25 |
Evaluate text classification for climate disinformation detection.
|
26 |
|
@@ -65,8 +93,10 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
65 |
# Make random predictions (placeholder for actual model inference)
|
66 |
true_labels = test_dataset["label"]
|
67 |
|
68 |
-
model
|
69 |
-
|
|
|
|
|
70 |
|
71 |
#--------------------------------------------------------------------------------------------
|
72 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
|
|
6 |
from skops.io import load
|
7 |
+
from .utils.text_preprocessor import TextPreprocessor
|
8 |
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
|
|
15 |
DESCRIPTION = "Random Baseline"
|
16 |
ROUTE = "/text"
|
17 |
|
18 |
+
models_description = {
|
19 |
+
"baseline": "random baseline",
|
20 |
+
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
|
21 |
+
}
|
22 |
+
|
23 |
+
# Some code borrowed from Nonnormalizable
|
24 |
+
|
25 |
+
def baseline_model(dataset_length: int):
|
26 |
+
# Make random predictions (placeholder for actual model inference)
|
27 |
+
predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
28 |
+
|
29 |
+
return predictions
|
30 |
+
|
31 |
+
def tree_classifier(test_dataset: dict, model: str):
|
32 |
+
texts = test_dataset["quote"]
|
33 |
+
|
34 |
+
model_path = f"models/frugalai_{model}"
|
35 |
+
|
36 |
+
model = load(model_path,
|
37 |
+
trusted=[
|
38 |
+
'__main__.TextPreprocessor',
|
39 |
+
'nltk.stem.wordnet.WordNetLemmatizer',
|
40 |
+
'xgboost.core.Booster',
|
41 |
+
'xgboost.sklearn.XGBClassifier'])
|
42 |
+
|
43 |
+
predictions = model.predict(texts)
|
44 |
+
|
45 |
+
return predictions
|
46 |
|
47 |
|
48 |
@router.post(ROUTE, tags=["Text Task"],
|
49 |
description=DESCRIPTION)
|
50 |
+
async def evaluate_text(request: TextEvaluationRequest,
|
51 |
+
model: str = "baseline"):
|
52 |
"""
|
53 |
Evaluate text classification for climate disinformation detection.
|
54 |
|
|
|
93 |
# Make random predictions (placeholder for actual model inference)
|
94 |
true_labels = test_dataset["label"]
|
95 |
|
96 |
+
if model == "baseline":
|
97 |
+
predictions = baseline_model(len(true_labels))
|
98 |
+
elif model == "tfidf_xgb":
|
99 |
+
predictions = tree_classifier(test_dataset, model='tfidf_xgb')
|
100 |
|
101 |
#--------------------------------------------------------------------------------------------
|
102 |
# YOUR MODEL INFERENCE STOPS HERE
|
tasks/text_models/.gitattributes
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
xgb_pipeline.skops filter=lfs diff=lfs merge=lfs -text
|
|
|
|
tasks/text_models/xgb_pipeline.skops
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6c2100f08f614713cd3e19f06e3456f32ef3d3bb23ce4ff2902688c8074bb82e
|
3 |
-
size 3277312
|
|
|
|
|
|
|
|
tasks/utils/text_preprocessor.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
from nltk.stem import WordNetLemmatizer
|
3 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
4 |
+
import nltk
|
5 |
+
import contractions
|
6 |
+
|
7 |
+
# Download required NLTK resources
|
8 |
+
nltk.download('punkt_tab')
|
9 |
+
nltk.download('wordnet')
|
10 |
+
|
11 |
+
# Custom transformer for preprocessing text
|
12 |
+
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
13 |
+
def __init__(self):
|
14 |
+
self.lemmatizer = WordNetLemmatizer()
|
15 |
+
|
16 |
+
def fit(self, X, y=None):
|
17 |
+
return self # Does nothing, just returns the instance
|
18 |
+
|
19 |
+
def transform(self, X):
|
20 |
+
preprocessed_texts = []
|
21 |
+
for doc in X:
|
22 |
+
# Expand contractions
|
23 |
+
expanded = contractions.fix(doc)
|
24 |
+
# Lowercase
|
25 |
+
lowered = expanded.lower()
|
26 |
+
|
27 |
+
# Tokenize and lemmatize
|
28 |
+
lemmatized = " ".join([self.lemmatizer.lemmatize(word) for word in nltk.word_tokenize(lowered)])
|
29 |
+
preprocessed_texts.append(lemmatized)
|
30 |
+
return preprocessed_texts
|