Terry Zhang
commited on
Commit
·
4c44667
1
Parent(s):
9bcb67c
move text preprocessor into app
Browse files- tasks/text.py +34 -2
- tasks/utils/text_preprocessor.py +0 -30
tasks/text.py
CHANGED
@@ -4,7 +4,6 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
7 |
-
from .utils.text_preprocessor import TextPreprocessor
|
8 |
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
@@ -20,6 +19,39 @@ models_description = {
|
|
20 |
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
|
21 |
}
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Some code borrowed from Nonnormalizable
|
24 |
|
25 |
def baseline_model(dataset_length: int):
|
@@ -36,7 +68,7 @@ def tree_classifier(test_dataset: dict, model: str):
|
|
36 |
|
37 |
model = load(model_path,
|
38 |
trusted=[
|
39 |
-
'
|
40 |
'nltk.stem.wordnet.WordNetLemmatizer',
|
41 |
'xgboost.core.Booster',
|
42 |
'xgboost.sklearn.XGBClassifier'])
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
|
|
7 |
|
8 |
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
|
|
19 |
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
|
20 |
}
|
21 |
|
22 |
+
# Textpreprocessor
|
23 |
+
import nltk
|
24 |
+
from nltk.stem import WordNetLemmatizer
|
25 |
+
from sklearn.base import BaseEstimator, TransformerMixin
|
26 |
+
import nltk
|
27 |
+
import contractions
|
28 |
+
|
29 |
+
# Download required NLTK resources
|
30 |
+
nltk.download('punkt_tab')
|
31 |
+
nltk.download('wordnet')
|
32 |
+
|
33 |
+
# Custom sklearn transformer for preprocessing text
|
34 |
+
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
35 |
+
def __init__(self):
|
36 |
+
self.lemmatizer = WordNetLemmatizer()
|
37 |
+
|
38 |
+
def fit(self, X, y=None):
|
39 |
+
return self
|
40 |
+
|
41 |
+
def transform(self, X):
|
42 |
+
preprocessed_texts = []
|
43 |
+
for doc in X:
|
44 |
+
# Expand contractions
|
45 |
+
expanded = contractions.fix(doc)
|
46 |
+
# Lowercase
|
47 |
+
lowered = expanded.lower()
|
48 |
+
|
49 |
+
# Tokenize and lemmatize
|
50 |
+
lemmatized = " ".join([self.lemmatizer.lemmatize(word) for word in nltk.word_tokenize(lowered)])
|
51 |
+
preprocessed_texts.append(lemmatized)
|
52 |
+
return preprocessed_texts
|
53 |
+
|
54 |
+
|
55 |
# Some code borrowed from Nonnormalizable
|
56 |
|
57 |
def baseline_model(dataset_length: int):
|
|
|
68 |
|
69 |
model = load(model_path,
|
70 |
trusted=[
|
71 |
+
'__main__.TextPreprocessor',
|
72 |
'nltk.stem.wordnet.WordNetLemmatizer',
|
73 |
'xgboost.core.Booster',
|
74 |
'xgboost.sklearn.XGBClassifier'])
|
tasks/utils/text_preprocessor.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import nltk
|
2 |
-
from nltk.stem import WordNetLemmatizer
|
3 |
-
from sklearn.base import BaseEstimator, TransformerMixin
|
4 |
-
import nltk
|
5 |
-
import contractions
|
6 |
-
|
7 |
-
# Download required NLTK resources
|
8 |
-
nltk.download('punkt_tab')
|
9 |
-
nltk.download('wordnet')
|
10 |
-
|
11 |
-
# Custom transformer for preprocessing text
|
12 |
-
class TextPreprocessor(BaseEstimator, TransformerMixin):
|
13 |
-
def __init__(self):
|
14 |
-
self.lemmatizer = WordNetLemmatizer()
|
15 |
-
|
16 |
-
def fit(self, X, y=None):
|
17 |
-
return self # Does nothing, just returns the instance
|
18 |
-
|
19 |
-
def transform(self, X):
|
20 |
-
preprocessed_texts = []
|
21 |
-
for doc in X:
|
22 |
-
# Expand contractions
|
23 |
-
expanded = contractions.fix(doc)
|
24 |
-
# Lowercase
|
25 |
-
lowered = expanded.lower()
|
26 |
-
|
27 |
-
# Tokenize and lemmatize
|
28 |
-
lemmatized = " ".join([self.lemmatizer.lemmatize(word) for word in nltk.word_tokenize(lowered)])
|
29 |
-
preprocessed_texts.append(lemmatized)
|
30 |
-
return preprocessed_texts
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|