Terry Zhang
commited on
Commit
·
a9f8367
1
Parent(s):
2b85173
add bert model code
Browse files- tasks/text.py +58 -5
tasks/text.py
CHANGED
@@ -4,8 +4,11 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
from .utils.evaluation import TextEvaluationRequest
|
11 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
@@ -19,11 +22,10 @@ ROUTE = "/text"
|
|
19 |
models_descriptions = {
|
20 |
"baseline": "random baseline",
|
21 |
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
|
|
|
22 |
}
|
23 |
|
24 |
|
25 |
-
# Some code borrowed from Nonnormalizable
|
26 |
-
|
27 |
def baseline_model(dataset_length: int):
|
28 |
# Make random predictions (placeholder for actual model inference)
|
29 |
predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
@@ -48,10 +50,59 @@ def tree_classifier(test_dataset: dict, model: str):
|
|
48 |
|
49 |
return predictions
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
@router.post(ROUTE, tags=["Text Task"])
|
53 |
async def evaluate_text(request: TextEvaluationRequest,
|
54 |
-
model: str = "
|
55 |
"""
|
56 |
Evaluate text classification for climate disinformation detection.
|
57 |
|
@@ -100,6 +151,8 @@ async def evaluate_text(request: TextEvaluationRequest,
|
|
100 |
predictions = baseline_model(len(true_labels))
|
101 |
elif model == "tfidf_xgb":
|
102 |
predictions = tree_classifier(test_dataset, model='xgb_pipeline')
|
|
|
|
|
103 |
|
104 |
#--------------------------------------------------------------------------------------------
|
105 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
from skops.io import load
|
7 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
8 |
+
import torch
|
9 |
+
from torch.utils.data import DataLoader, Dataset
|
10 |
+
import numpy as np
|
11 |
+
from accelerate.test_utils.testing import get_backend
|
12 |
|
13 |
from .utils.evaluation import TextEvaluationRequest
|
14 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
|
22 |
models_descriptions = {
|
23 |
"baseline": "random baseline",
|
24 |
"tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier",
|
25 |
+
"bert_base_pruned": "Pruned BERT base model",
|
26 |
}
|
27 |
|
28 |
|
|
|
|
|
29 |
def baseline_model(dataset_length: int):
|
30 |
# Make random predictions (placeholder for actual model inference)
|
31 |
predictions = [random.randint(0, 7) for _ in range(dataset_length)]
|
|
|
50 |
|
51 |
return predictions
|
52 |
|
53 |
+
class TextDataset(Dataset):
|
54 |
+
def __init__(self, texts, tokenizer, max_length=256):
|
55 |
+
self.texts = texts
|
56 |
+
self.tokenized_texts = tokenizer(
|
57 |
+
texts,
|
58 |
+
truncation=True,
|
59 |
+
padding=True,
|
60 |
+
max_length=max_length,
|
61 |
+
return_tensors="pt",
|
62 |
+
)
|
63 |
+
|
64 |
+
def __getitem__(self, idx):
|
65 |
+
item = {key: val[idx] for key, val in self.tokenized_texts.items()}
|
66 |
+
return item
|
67 |
+
|
68 |
+
def __len__(self) -> int:
|
69 |
+
return len(self.texts)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def bert_classifier(test_dataset: dict, model: str):
|
74 |
+
texts = test_dataset["quote"]
|
75 |
+
|
76 |
+
model_repo = f"theterryzhang/frugal_ai_{model}"
|
77 |
+
|
78 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_repo)
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
80 |
+
|
81 |
+
# Use CUDA if available
|
82 |
+
device, _, _ = get_backend()
|
83 |
+
|
84 |
+
model = model.to(device)
|
85 |
+
|
86 |
+
# Prepare dataset
|
87 |
+
dataset = TextDataset(texts, tokenizer=tokenizer)
|
88 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
|
89 |
+
|
90 |
+
model.eval()
|
91 |
+
with torch.no_grad():
|
92 |
+
predictions = np.array([])
|
93 |
+
for batch in dataloader:
|
94 |
+
test_input_ids = batch["input_ids"].to(device)
|
95 |
+
test_attention_mask = batch["attention_mask"].to(device)
|
96 |
+
outputs = model(test_input_ids, test_attention_mask)
|
97 |
+
p = torch.argmax(outputs.logits, dim=1)
|
98 |
+
predictions = np.append(predictions, p.cpu().numpy())
|
99 |
+
|
100 |
+
return predictions
|
101 |
+
|
102 |
|
103 |
@router.post(ROUTE, tags=["Text Task"])
|
104 |
async def evaluate_text(request: TextEvaluationRequest,
|
105 |
+
model: str = "bert_base_pruned"):
|
106 |
"""
|
107 |
Evaluate text classification for climate disinformation detection.
|
108 |
|
|
|
151 |
predictions = baseline_model(len(true_labels))
|
152 |
elif model == "tfidf_xgb":
|
153 |
predictions = tree_classifier(test_dataset, model='xgb_pipeline')
|
154 |
+
elif 'bert' in model:
|
155 |
+
predictions = bert_classifier(test_dataset, model)
|
156 |
|
157 |
#--------------------------------------------------------------------------------------------
|
158 |
# YOUR MODEL INFERENCE STOPS HERE
|