from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from skops.io import load from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig import torch from torch.utils.data import DataLoader, Dataset import numpy as np from accelerate.test_utils.testing import get_backend from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from .utils.text_preprocessor import preprocess router = APIRouter() DESCRIPTION = "Random Baseline" ROUTE = "/text" models_descriptions = { "baseline": "random baseline", "tfidf_xgb": "TF-IDF vectorizer and XGBoost classifier", "bert_base_pruned": "Pruned BERT base model", } def baseline_model(dataset_length: int): # Make random predictions (placeholder for actual model inference) predictions = [random.randint(0, 7) for _ in range(dataset_length)] return predictions def tree_classifier(test_dataset: dict, model: str): texts = test_dataset["quote"] texts = preprocess(texts) model_path = f"tasks/text_models/{model}.skops" model = load(model_path, trusted=[ 'scipy.sparse._csr.csr_matrix', 'xgboost.core.Booster', 'xgboost.sklearn.XGBClassifier']) predictions = model.predict(texts) return predictions class TextDataset(Dataset): def __init__(self, texts, tokenizer, max_length=256): self.texts = texts self.tokenized_texts = tokenizer( texts, truncation=True, padding=True, max_length=max_length, return_tensors="pt", ) def __getitem__(self, idx): item = {key: val[idx] for key, val in self.tokenized_texts.items()} return item def __len__(self) -> int: return len(self.texts) def bert_classifier(test_dataset: dict, model: str): texts = test_dataset["quote"] model_repo = f"theterryzhang/frugal_ai_{model}" model = AutoModelForSequenceClassification.from_pretrained(model_repo) tokenizer = AutoTokenizer.from_pretrained(model_repo) # Use CUDA if available device, _, _ = get_backend() model = model.to(device) # Prepare dataset dataset = TextDataset(texts, tokenizer=tokenizer) dataloader = DataLoader(dataset, batch_size=32, shuffle=False) model.eval() with torch.no_grad(): predictions = np.array([]) for batch in dataloader: test_input_ids = batch["input_ids"].to(device) test_attention_mask = batch["attention_mask"].to(device) outputs = model(test_input_ids, test_attention_mask) p = torch.argmax(outputs.logits, dim=1) predictions = np.append(predictions, p.cpu().numpy()) return predictions @router.post(ROUTE, tags=["Text Task"]) async def evaluate_text(request: TextEvaluationRequest, model: str = "bert_base_pruned"): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] if model == "baseline": predictions = baseline_model(len(true_labels)) elif model == "tfidf_xgb": predictions = tree_classifier(test_dataset, model='xgb_pipeline') elif 'bert' in model: predictions = bert_classifier(test_dataset, model) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": models_descriptions[model], "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results