Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @title Think Paraguayo
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
os.system("pip install gradio, llama_index, ragatouille, llama-cpp-python")
|
| 8 |
+
os.system("git clone https://github.com/EnPaiva93/think-paraguayo-space-aux.git")
|
| 9 |
+
os.system("wget https://huggingface.co/thinkPy/gua-a_ft-v0.1_mistral-7b_GGUF/resolve/main/gua-a_mistral-7b_q4_K_M.gguf -O model.gguf")
|
| 10 |
+
|
| 11 |
+
from llama_cpp import Llama
|
| 12 |
+
import gradio as gr
|
| 13 |
+
from ragatouille import RAGPretrainedModel
|
| 14 |
+
from llama_index.core import Document, SimpleDirectoryReader
|
| 15 |
+
from llama_index.core.node_parser import SentenceSplitter
|
| 16 |
+
|
| 17 |
+
max_seq_length = 512 # Choose any! We auto support RoPE Scaling internally!
|
| 18 |
+
|
| 19 |
+
prompt = """Responde a preguntas de forma clara, amable, concisa y solamente en el lenguaje español, sobre el libro Ñande Ypykuéra.
|
| 20 |
+
Contexto
|
| 21 |
+
-------------------------
|
| 22 |
+
{}
|
| 23 |
+
-------------------------
|
| 24 |
+
### Pregunta:
|
| 25 |
+
{}
|
| 26 |
+
### Respuesta:
|
| 27 |
+
{}"""
|
| 28 |
+
|
| 29 |
+
# Initialize the LLM
|
| 30 |
+
llm = Llama(model_path="model.gguf",
|
| 31 |
+
n_ctx=512,
|
| 32 |
+
n_threads=2)
|
| 33 |
+
|
| 34 |
+
DOC_PATH = "/app/think-paraguayo-space-aux/index"
|
| 35 |
+
|
| 36 |
+
print(os.getcwd())
|
| 37 |
+
|
| 38 |
+
documents = SimpleDirectoryReader(input_files=["/app/think-paraguayo-space-aux/libro.txt"]).load_data()
|
| 39 |
+
|
| 40 |
+
parser = SentenceSplitter(chunk_size=128, chunk_overlap=64)
|
| 41 |
+
nodes = parser.get_nodes_from_documents(
|
| 42 |
+
documents, show_progress=False
|
| 43 |
+
)
|
| 44 |
+
list_nodes = [node.text for node in nodes]
|
| 45 |
+
|
| 46 |
+
print(os.getcwd())
|
| 47 |
+
|
| 48 |
+
if os.path.exists(DOC_PATH):
|
| 49 |
+
RAG = RAGPretrainedModel.from_index(DOC_PATH)
|
| 50 |
+
else:
|
| 51 |
+
RAG = RAGPretrainedModel.from_pretrained("AdrienB134/ColBERTv2.0-spanish-mmarcoES")
|
| 52 |
+
my_documents = list_nodes
|
| 53 |
+
index_path = RAG.index(index_name=DOC_PATH, max_document_length= 100, collection=my_documents)
|
| 54 |
+
|
| 55 |
+
# def convert_list_to_dict(lst):
|
| 56 |
+
# res_dct = {i: lst[i] for i in range(len(lst))}
|
| 57 |
+
# return res_dct
|
| 58 |
+
|
| 59 |
+
def reformat_rag(results_rag):
|
| 60 |
+
if results_rag is not None:
|
| 61 |
+
return [result["content"] for result in results_rag]
|
| 62 |
+
else:
|
| 63 |
+
return [""]
|
| 64 |
+
|
| 65 |
+
# def response(query: str = "Quien es gua'a?", context: str = ""):
|
| 66 |
+
# # print(base_prompt.format(query,""))
|
| 67 |
+
# inputs = tokenizer([base_prompt.format(query,"")], return_tensors = "pt").to("cuda")
|
| 68 |
+
# outputs = model.generate(**inputs, max_new_tokens = 128, temperature = 0.1, repetition_penalty=1.15, pad_token_id=tokenizer.eos_token_id)
|
| 69 |
+
# return tokenizer.batch_decode(outputs[0][inputs["input_ids"].shape[1]:].unsqueeze(0), skip_special_tokens=True)[0]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def chat_stream_completion(message, history):
|
| 73 |
+
|
| 74 |
+
context = reformat_rag(RAG.search(message, k=1))
|
| 75 |
+
context = " \n ".join(context)
|
| 76 |
+
|
| 77 |
+
full_prompt = prompt.format(context,message,"")
|
| 78 |
+
print(full_prompt)
|
| 79 |
+
|
| 80 |
+
response = llm.create_completion(
|
| 81 |
+
prompt=full_prompt,
|
| 82 |
+
temperature=0.01,
|
| 83 |
+
max_tokens=256,
|
| 84 |
+
stream=True
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# print(response)
|
| 88 |
+
|
| 89 |
+
message_repl = ""
|
| 90 |
+
for chunk in response:
|
| 91 |
+
if len(chunk['choices'][0]["text"]) != 0:
|
| 92 |
+
# print(chunk)
|
| 93 |
+
message_repl = message_repl + chunk['choices'][0]["text"]
|
| 94 |
+
yield message_repl
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# def answer_question(pipeline, character, question):
|
| 98 |
+
# def answer_question(question):
|
| 99 |
+
# # context = reformat_rag(RAG.search(question, k=2))
|
| 100 |
+
# # context = " \n ".join(context)
|
| 101 |
+
# yield chat_stream_completion(question, None)
|
| 102 |
+
|
| 103 |
+
# def answer_question(question):
|
| 104 |
+
# context = reformat_rag(RAG.search(question, k=2))
|
| 105 |
+
# context = " \n ".join(context)
|
| 106 |
+
# return response(question, "")
|
| 107 |
+
|
| 108 |
+
# def random_element():
|
| 109 |
+
# return random.choice(list_nodes)
|
| 110 |
+
|
| 111 |
+
# clear_output()
|
| 112 |
+
print("Importación Completada.. OK")
|
| 113 |
+
|
| 114 |
+
css = """
|
| 115 |
+
h1 {
|
| 116 |
+
font-size: 32px;
|
| 117 |
+
text-align: center;
|
| 118 |
+
}
|
| 119 |
+
h2 {
|
| 120 |
+
text-align: center;
|
| 121 |
+
}
|
| 122 |
+
img {
|
| 123 |
+
height: 750px; /* Reducing the image height */
|
| 124 |
+
}
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
def main():
|
| 128 |
+
with gr.Blocks(css=css) as demo:
|
| 129 |
+
gr.Markdown("# Think Paraguayo")
|
| 130 |
+
gr.Markdown("## Conoce la cultura guaraní!!")
|
| 131 |
+
|
| 132 |
+
with gr.Row(variant='panel'):
|
| 133 |
+
with gr.Column(scale=1):
|
| 134 |
+
gr.Image(value="/app/think-paraguayo-space-aux/think_paraguayo.jpeg", type="filepath", label="Imagen Estática")
|
| 135 |
+
|
| 136 |
+
with gr.Column(scale=1):
|
| 137 |
+
# with gr.Row():
|
| 138 |
+
# button = gr.Button("Cuentame ...")
|
| 139 |
+
# with gr.Row():
|
| 140 |
+
|
| 141 |
+
# textbox = gr.Textbox(label="", interactive=False, value=random_element())
|
| 142 |
+
# button.click(fn=random_element, inputs=[], outputs=textbox)
|
| 143 |
+
|
| 144 |
+
# with gr.Row():
|
| 145 |
+
chatbot = gr.ChatInterface(
|
| 146 |
+
fn=chat_stream_completion,
|
| 147 |
+
retry_btn = None,
|
| 148 |
+
stop_btn = None,
|
| 149 |
+
undo_btn = None
|
| 150 |
+
).queue()
|
| 151 |
+
# with gr.Row():
|
| 152 |
+
# msg = gr.Textbox()
|
| 153 |
+
# with gr.Row():
|
| 154 |
+
# clear = gr.ClearButton([msg, chatbot])
|
| 155 |
+
|
| 156 |
+
# def respond(message, chat_history):
|
| 157 |
+
# bot_message = answer_question(message)
|
| 158 |
+
# print(bot_message)
|
| 159 |
+
# chat_history.append((message, bot_message))
|
| 160 |
+
# time.sleep(2)
|
| 161 |
+
# return "", chat_history
|
| 162 |
+
|
| 163 |
+
# msg.submit(chat_stream_completion, [msg, chatbot], [msg, chatbot])
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
demo.launch(share=True, inline= False, debug=True)
|
| 167 |
+
|
| 168 |
+
main()
|