File size: 8,441 Bytes
2afc3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from typing import Any, Dict, List, Optional, Union
from types import GeneratorType
from langchain.callbacks.base import AsyncCallbackHandler, BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
from langchain.embeddings.openai import embed_with_retry, OpenAIEmbeddings
from pydantic import Extra, Field, root_validator
import numpy as np

class StreamingLLMCallbackHandler(AsyncCallbackHandler):
    """Callback handler for streaming LLM responses to a queue."""

    def __init__(self, q):
        self.q = q

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        self.q.put(token)


class SyncStreamingLLMCallbackHandler(BaseCallbackHandler):
    """Callback handler for streaming LLM responses to a queue."""

    def __init__(self, q):
        self.q = q

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        self.q.put(token)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_chain_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

    def on_tool_start(
        self,
        serialized: Dict[str, Any],
        input_str: str,
        **kwargs: Any,
    ) -> None:
        """Do nothing."""
        pass

    def on_tool_end(
        self,
        output: str,
        color: Optional[str] = None,
        observation_prefix: Optional[str] = None,
        llm_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        """Do nothing."""
        pass

    def on_tool_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Do nothing."""
        pass

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        pass

    def on_agent_finish(
        self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
    ) -> None:
        """Run on agent end."""
        pass


def concatenate_generators(*args):
    final_outputs = ""
    for g in args:
        if isinstance(g, GeneratorType):
            for v in g:
                yield final_outputs + v
            result = v
        else:
            yield final_outputs + g
            result = g
        final_outputs += result


class CustomOpenAIEmbeddings(OpenAIEmbeddings):
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)

    """
    A version of OpenAIEmbeddings that allows extra args
    to be passed to OpenAI functions.
    Based on langchain's ChatOpenAI.
    """
    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.ignore

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = {field.alias for field in cls.__fields__.values()}

        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                # logger.warning(
                #     f"""WARNING! {field_name} is not default parameter.
                #     {field_name} was transferred to model_kwargs.
                #     Please confirm that {field_name} is what you intended."""
                # )
                extra[field_name] = values.pop(field_name)

        disallowed_model_kwargs = all_required_field_names | {"model"}
        invalid_model_kwargs = disallowed_model_kwargs.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )

        values["model_kwargs"] = extra
        return values

    # use extra args in calls

    # please refer to
    # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
    def _get_len_safe_embeddings(
        self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
    ) -> List[List[float]]:
        embeddings: List[List[float]] = [[] for _ in range(len(texts))]
        try:
            import tiktoken

            tokens = []
            indices = []
            encoding = tiktoken.model.encoding_for_model(self.model)
            for i, text in enumerate(texts):
                if self.model.endswith("001"):
                    # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
                    # replace newlines, which can negatively affect performance.
                    text = text.replace("\n", " ")
                token = encoding.encode(
                    text,
                    allowed_special=self.allowed_special,
                    disallowed_special=self.disallowed_special,
                )
                for j in range(0, len(token), self.embedding_ctx_length):
                    tokens += [token[j : j + self.embedding_ctx_length]]
                    indices += [i]

            batched_embeddings = []
            _chunk_size = chunk_size or self.chunk_size
            for i in range(0, len(tokens), _chunk_size):
                response = embed_with_retry(
                    self,
                    input=tokens[i : i + _chunk_size],
                    engine=self.deployment,
                    request_timeout=self.request_timeout,
                    **self.model_kwargs,
                )
                batched_embeddings += [r["embedding"] for r in response["data"]]

            results: List[List[List[float]]] = [[] for _ in range(len(texts))]
            num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
            for i in range(len(indices)):
                results[indices[i]].append(batched_embeddings[i])
                num_tokens_in_batch[indices[i]].append(len(tokens[i]))

            for i in range(len(texts)):
                _result = results[i]
                if len(_result) == 0:
                    average = embed_with_retry(
                        self,
                        input="",
                        engine=self.deployment,
                        request_timeout=self.request_timeout,
                        **self.model_kwargs,
                    )["data"][0]["embedding"]
                else:
                    average = np.average(
                        _result, axis=0, weights=num_tokens_in_batch[i]
                    )
                embeddings[i] = (average / np.linalg.norm(average)).tolist()

            return embeddings

        except ImportError:
            raise ValueError(
                "Could not import tiktoken python package. "
                "This is needed in order to for OpenAIEmbeddings. "
                "Please install it with `pip install tiktoken`."
            )

    def _embedding_func(self, text: str, *, engine: str) -> List[float]:
        """Call out to OpenAI's embedding endpoint."""
        # handle large input text
        if len(text) > self.embedding_ctx_length:
            return self._get_len_safe_embeddings([text], engine=engine)[0]
        else:
            if self.model.endswith("001"):
                # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
                # replace newlines, which can negatively affect performance.
                text = text.replace("\n", " ")
            return embed_with_retry(
                self, input=[text], engine=engine, request_timeout=self.request_timeout,
                **self.model_kwargs,
            )["data"][0]["embedding"]