Spaces:
Runtime error
Runtime error
| """FastAPI endpoint | |
| To run locally use 'uvicorn app:app --host localhost --port 7860' | |
| """ | |
| import re | |
| from fastapi import FastAPI, Request | |
| from fastapi.responses import JSONResponse | |
| from fastapi.staticfiles import StaticFiles | |
| from fastapi.templating import Jinja2Templates | |
| from mathtext.sentiment import sentiment | |
| from mathtext.text2int import text2int | |
| from pydantic import BaseModel | |
| from mathtext_fastapi.logging import prepare_message_data_for_logging | |
| from mathtext_fastapi.conversation_manager import manage_conversation_response | |
| from mathtext_fastapi.nlu import evaluate_message_with_nlu | |
| app = FastAPI() | |
| app.mount("/static", StaticFiles(directory="static"), name="static") | |
| templates = Jinja2Templates(directory="templates") | |
| class Text(BaseModel): | |
| content: str = "" | |
| def home(request: Request): | |
| return templates.TemplateResponse("home.html", {"request": request}) | |
| def hello(content: Text = None): | |
| content = {"message": f"Hello {content.content}!"} | |
| return JSONResponse(content=content) | |
| def sentiment_analysis_ep(content: Text = None): | |
| ml_response = sentiment(content.content) | |
| content = {"message": ml_response} | |
| return JSONResponse(content=content) | |
| def text2int_ep(content: Text = None): | |
| ml_response = text2int(content.content) | |
| content = {"message": ml_response} | |
| return JSONResponse(content=content) | |
| async def programmatic_message_manager(request: Request): | |
| """ | |
| Calls conversation management function to determine the next state | |
| Input | |
| request.body: dict - message data for the most recent user response | |
| { | |
| "author_id": "+47897891", | |
| "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", | |
| "author_type": "OWNER", | |
| "message_body": "a test message", | |
| "message_direction": "inbound", | |
| "message_id": "ABJAK64jlk3-agjkl2QHFAFH", | |
| "message_inserted_at": "2022-07-05T04:00:34.03352Z", | |
| "message_updated_at": "2023-02-14T03:54:19.342950Z", | |
| } | |
| Output | |
| context: dict - the information for the current state | |
| { | |
| "user": "47897891", | |
| "state": "welcome-message-state", | |
| "bot_message": "Welcome to Rori!", | |
| "user_message": "", | |
| "type": "ask" | |
| } | |
| """ | |
| data_dict = await request.json() | |
| context = manage_conversation_response(data_dict) | |
| return JSONResponse(context) | |
| async def evaluate_user_message_with_nlu_api(request: Request): | |
| """ Calls nlu evaluation and returns the nlu_response | |
| Input | |
| - request.body: json - message data for the most recent user response | |
| Output | |
| - int_data_dict or sent_data_dict: dict - the type of NLU run and result | |
| {'type':'integer', 'data': '8'} | |
| {'type':'sentiment', 'data': 'negative'} | |
| """ | |
| data_dict = await request.json() | |
| message_data = data_dict.get('message_data', '') | |
| nlu_response = evaluate_message_with_nlu(message_data) | |
| return JSONResponse(content=nlu_response) | |