import os import langchain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import TextLoader from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.schema import Document import streamlit as st from langchain_groq import ChatGroq from langchain.text_splitter import CharacterTextSplitter from langchain.prompts import PromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain.schema.runnable import RunnablePassthrough text_splitter = RecursiveCharacterTextSplitter(chunk_size=75, chunk_overlap=0, separators=["\n",'. ']) loader = TextLoader('data.txt') docs = loader.load() split_docs = text_splitter.split_documents(docs) # Iterate over the Document objects and extract the content and metadata using the appropriate attributes split_docss = [Document(page_content=t.page_content, metadata=t.metadata) for t in split_docs] embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vectorstore = FAISS.from_documents(split_docss,embeddings) retriever=vectorstore.as_retriever() retriever.search_kwargs['k'] = 5 os.environ['GROQ_API_KEY']='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' def preprocess(text): return "\n".join(x.page_content for x in text) def format_docs(docs): return "\n".join(doc.page_content for doc in docs) def printer(text): print(text) return text llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768", streaming=True, verbose=False) # llama3-8b-8192 prompt='''You are a coupon recommender chatbot. Understand the question with the category of the item and the location: {summary} and answer with only relevant coupons: {context} Instructions: List only the coupons that match the category of the item along with the location in the question.Use three sentences maximum and keep the answer concise. ''' template=PromptTemplate(template=prompt,input_variables=['summary','context']) rag_chain=({ "summary": RunnablePassthrough(), "context": retriever | format_docs , } | template|printer| llm| StrOutputParser()) st.set_page_config(page_title="Lloyds Mobile Rewards Section", layout="wide") st.title("Mock Rewards Section") st.header("Welcome to Your Rewards") st.write("Find exclusive offers and discounts just for you!") st.sidebar.title("Check your eligibility to turn on the discover mode!") # category = st.sidebar.selectbox("Select Category", ["All", "Electronics", "Food", "Groceries"]) if 'count' not in st.session_state: st.session_state.count = 0 enable_controls = st.session_state.count == 5 def increment_count(): st.session_state.count += 1 st.sidebar.title(f'Number of transactions : {st.session_state.count}') # st.write(f"Button has been pressed {st.session_state.count} times") button=st.sidebar.button("Mock Transaction") if button: increment_count() response=None # Display the updated count if enable_controls: st.sidebar.write("You are now eligible for discover mode ") user_input = st.sidebar.text_input("Enter your request or choice of category", key='user_input') response=retriever.get_relevant_documents(query=st.session_state.user_input) st.write(f'{response}') if not enable_controls: st.sidebar.write(f"Keep going {20-st.session_state.count} times.")