Spaces:
Runtime error
Runtime error
Commit
·
fba53f9
1
Parent(s):
6903066
llm added
Browse files- app.py +30 -10
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
| 5 |
import os
|
| 6 |
from monai.networks.nets import SegResNet
|
| 7 |
from monai.inferers import sliding_window_inference
|
|
@@ -18,6 +20,8 @@ from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
| 18 |
import librosa
|
| 19 |
import torch
|
| 20 |
|
|
|
|
|
|
|
| 21 |
title = 'Detect and Segment Brain Tumors 🧠'
|
| 22 |
description = '''
|
| 23 |
'''
|
|
@@ -84,14 +88,30 @@ def process_audio(sampling_rate, waveform):
|
|
| 84 |
return waveform
|
| 85 |
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def detector(tumor_file, slice_number, channel, language, audio_question):
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
tumor_file_path = tumor_file.name
|
| 96 |
processed_data = preproc_transforms({'image': [tumor_file_path]})
|
| 97 |
tensor_3d_input = processed_data['image'].unsqueeze(0).to('cpu')
|
|
@@ -110,17 +130,17 @@ def detector(tumor_file, slice_number, channel, language, audio_question):
|
|
| 110 |
plt.savefig(output_image_path, bbox_inches='tight', pad_inches=0)
|
| 111 |
segment_image = np.asarray(Image.open(output_image_path))
|
| 112 |
os.remove(output_image_path)
|
| 113 |
-
return (channel_image, segment_image,
|
| 114 |
|
| 115 |
|
| 116 |
interface = gr.Interface(fn=detector, inputs=[gr.File(label="Tumor File"),
|
| 117 |
gr.Slider(0, 200, 50, step=1, label="Slice Number"),
|
| 118 |
gr.Radio((0, 1, 2), label="Channel"),
|
| 119 |
gr.Radio(("english", "japanese", "german", "spanish"), label="Language"),
|
| 120 |
-
gr.Audio(source="microphone"), ],
|
| 121 |
outputs=[gr.Image(label='channel', shape=(1, 1)),
|
| 122 |
gr.Image(label='Segmented Tumor', shape=(1, 1)),
|
| 123 |
-
gr.Textbox(label="
|
| 124 |
examples=examples,
|
| 125 |
description=description, theme='dark')
|
| 126 |
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
from PIL import Image
|
| 5 |
+
import openai
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
import os
|
| 8 |
from monai.networks.nets import SegResNet
|
| 9 |
from monai.inferers import sliding_window_inference
|
|
|
|
| 20 |
import librosa
|
| 21 |
import torch
|
| 22 |
|
| 23 |
+
load_dotenv()
|
| 24 |
+
|
| 25 |
title = 'Detect and Segment Brain Tumors 🧠'
|
| 26 |
description = '''
|
| 27 |
'''
|
|
|
|
| 88 |
return waveform
|
| 89 |
|
| 90 |
|
| 91 |
+
openai.api_key = os.environ.get("OPENAI_KEY")
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def make_llm_call(prompt,
|
| 95 |
+
context="You are a text generation model DR-Brain Developed by team brute force team consist of HARSHA VARDHAN V , SAWIN KUMAR Y , CHARAN TEJA P, KISHORE S. Your specialized in medical stuff"):
|
| 96 |
+
messages = [{"role": "user", "content": prompt}]
|
| 97 |
+
if context:
|
| 98 |
+
messages.insert(0, {"role": "system", "content": context})
|
| 99 |
+
response_obj = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
| 100 |
+
response_message = dict(dict(response_obj)['choices'][0])["message"]["content"]
|
| 101 |
+
return response_message
|
| 102 |
+
|
| 103 |
+
|
| 104 |
def detector(tumor_file, slice_number, channel, language, audio_question):
|
| 105 |
+
llm_answer = "Hi I'm Dr brain please enter a question to answer"
|
| 106 |
+
if audio_question:
|
| 107 |
+
sampling_rate, waveform = audio_question
|
| 108 |
+
forced_decoder_ids = processor_whisper.get_decoder_prompt_ids(language=language, task="transcribe")
|
| 109 |
+
waveform = process_audio(sampling_rate, waveform)
|
| 110 |
+
audio_inputs = processor_whisper(audio=waveform, sampling_rate=16000, return_tensors="pt")
|
| 111 |
+
predicted_ids = model_whisper.generate(**audio_inputs, max_length=400, forced_decoder_ids=forced_decoder_ids)
|
| 112 |
+
transcription = processor_whisper.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 113 |
+
llm_quesion = transcription[0]
|
| 114 |
+
llm_answer = make_llm_call(llm_quesion)
|
| 115 |
tumor_file_path = tumor_file.name
|
| 116 |
processed_data = preproc_transforms({'image': [tumor_file_path]})
|
| 117 |
tensor_3d_input = processed_data['image'].unsqueeze(0).to('cpu')
|
|
|
|
| 130 |
plt.savefig(output_image_path, bbox_inches='tight', pad_inches=0)
|
| 131 |
segment_image = np.asarray(Image.open(output_image_path))
|
| 132 |
os.remove(output_image_path)
|
| 133 |
+
return (channel_image, segment_image, llm_answer)
|
| 134 |
|
| 135 |
|
| 136 |
interface = gr.Interface(fn=detector, inputs=[gr.File(label="Tumor File"),
|
| 137 |
gr.Slider(0, 200, 50, step=1, label="Slice Number"),
|
| 138 |
gr.Radio((0, 1, 2), label="Channel"),
|
| 139 |
gr.Radio(("english", "japanese", "german", "spanish"), label="Language"),
|
| 140 |
+
gr.Audio(info="Ask our medical specialist", source="microphone"), ],
|
| 141 |
outputs=[gr.Image(label='channel', shape=(1, 1)),
|
| 142 |
gr.Image(label='Segmented Tumor', shape=(1, 1)),
|
| 143 |
+
gr.Textbox(label="Dr brain response")], title=title,
|
| 144 |
examples=examples,
|
| 145 |
description=description, theme='dark')
|
| 146 |
|
requirements.txt
CHANGED
|
@@ -5,4 +5,7 @@ torchaudio
|
|
| 5 |
nibabel
|
| 6 |
monai
|
| 7 |
matplotlib
|
| 8 |
-
librosa
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
nibabel
|
| 6 |
monai
|
| 7 |
matplotlib
|
| 8 |
+
librosa
|
| 9 |
+
python-dotenv
|
| 10 |
+
requests
|
| 11 |
+
openai
|