from flask import Flask, request, jsonify, send_from_directory from flask_limiter import Limiter from flask_limiter.util import get_remote_address import google.generativeai as genai from PIL import Image from io import BytesIO from prodiapy import Prodia import requests import os import psutil import time import datetime import json import subprocess import string import random from g4f.client import Client import tempfile from huggingface_hub import HfApi, login import threading client = Client() app = Flask(__name__) HF_TOKEN = os.environ.get('HF_TOKEN') login(token=HF_TOKEN) api = HfApi() limiter = Limiter( app, default_limits=["30 per minute"] ) # Define the path to static files static_dir = os.path.join(os.path.dirname(os.path.abspath(__file__))) @app.route('/css/') def css(filename): return send_from_directory(os.path.join(static_dir, 'css'), filename) @app.route('/js/') def js(filename): return send_from_directory(os.path.join(static_dir, 'js'), filename) @app.route('/img/') def img(filename): return send_from_directory(os.path.join(static_dir, 'img'), filename) @app.route('/') def index(): return send_from_directory(static_dir, 'index.html') @app.route('/ai') def ai(): return send_from_directory(os.path.join(static_dir, 'views'), 'ai.html') @app.route('/ai/') def ai_file(filename): if filename.endswith('.py'): with open(os.path.join(static_dir, 'ai', filename), 'r') as f: code = f.read() output = subprocess.check_output(["python", "-c", code], shell=True, stderr=subprocess.STDOUT) return output.decode('utf-8') else: return send_from_directory(os.path.join(static_dir, 'ai'), filename) @app.route('/info') def info(): ip = request.remote_addr current_time = datetime.datetime.now().strftime("%H:%M:%S") return jsonify({'ip': ip, 'current_time': current_time}) # Define the visitor count routes visitor_count = 0 visitor_today = 0 last_update_date = datetime.datetime.now().date() visitor_total = 0 @app.before_request def update_visitor_counts(): global visitor_count, visitor_today, last_update_date, visitor_total allowed_paths = ['/ai', '/api', '/tool'] if request.path.startswith(tuple(allowed_paths)): current_date = datetime.datetime.now().date() if current_date != last_update_date: visitor_today = 0 last_update_date = current_date visitor_count += 1 visitor_today += 1 visitor_total += 1 if datetime.datetime.now().hour == 0 and datetime.datetime.now().minute == 0: reset_visitor_count() @app.route('/count') def count(): return jsonify({ 'visitor_count': visitor_count, 'visitor_today': visitor_today, 'visitor_total': visitor_total }) # Define the status route @app.route('/status') def status(): uptime_seconds = int(time.time() - psutil.boot_time()) uptime = str(datetime.timedelta(seconds=uptime_seconds)) memory_free = psutil.virtual_memory().available memory_total = psutil.virtual_memory().total return jsonify({'runtime': uptime, 'memory': f'{memory_free} / {memory_total}'}) # Handle 404 errors @app.errorhandler(404) def page_not_found(e): return send_from_directory(static_dir, '404.html'), 404 apiKeys = [ "f5282cab-1ced-4b6e-80f4-11b2be59af01", "2021e94a-1385-4ddc-905b-c050cfb5af32", "0bfe0e6d-6bf9-4984-ab07-3a9410a551ad", "1452e7a5-d6e2-4600-9641-1c2debde397a", "f4b18c3c-ea4d-4b18-be47-f5ad29d70936", "688659c2-b2e9-4524-8a91-1c72735ec068", "aa64f14e-18d8-44df-91cc-6d4e20051ca3", "7440ab53-6c97-40bc-aad4-50a93e753256", "65f9a7e7-bcf5-4f21-8715-64cdbc3adbdf", "cc9e0170-ffc8-43e0-b01c-eb4847158a72", "ee39894a-3f05-4fca-8d6b-2eaf6443c2d5", "ef9d2480-a655-490e-983a-2a448ead257c", "a888afb5-2e90-4fc0-bb1a-617ba4a24c2f", "201a4f06-ac0d-4877-a8d6-c346d7dc1c9f", "9f604055-793a-4a2f-a528-c7fe283f0fa9" ] # Load styles from style.json file with open("style.json", "r") as style_file: styleList = json.load(style_file) def getRandomApiKey(): # Implement your logic to get a random API key here return random.choice(apiKeys) def getRandomSeed(): return random.randint(1, 18446744073709552000) def getAvailableStyles(): return ', '.join([style["name"] for style in styleList]) prodia = Prodia(getRandomApiKey()) @app.route('/styles', methods=['GET']) def get_styles(): with open("style.json", "r") as style_file: styles = json.load(style_file) return jsonify({'status': 'success', "styles": [style["name"] for style in styles]}) @app.route('/upload/image', methods=['GET']) def upload_image(): try: # Get the URL parameter url = request.args.get('url') if not url: return jsonify({'error': 'URL parameter is missing'}), 400 # Download the image response = requests.get(url) if response.status_code != 200: return jsonify({'error': 'Failed to download image'}), 400 image_name = f"image.png" # Save the image img = Image.open(BytesIO(response.content)) img.save(image_name, "PNG") # Send the image to Discord discord_webhook_url = "https://discord.com/api/webhooks/1217109788656406588/sh0LG9VH5wmxSWP8OBwfHxfbbMHleUX6eQ8-xULIEo5m4IASfNm7jCNrZFZZweKaNGTM" files = {'file': open(image_name, 'rb')} webhook_response = requests.post(discord_webhook_url, files=files) # Get the uploaded image URL from Discord CDN discord_cdn_url = webhook_response.json().get('attachments', [{}])[0].get('url') # Delete the temporary image file os.remove(image_name) return jsonify({ 'success': f'Image uploaded and sent to Discord', 'discord_cdn_url': discord_cdn_url }), 200 except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/generate', methods=['POST']) async def generate_image(): try: data = request.json prompt = data.get('prompt', '') userStyle = data.get('style') seed = int(data.get('seed', getRandomSeed())) guidance_scale = int(data.get('guidance_scale', 0)) if not userStyle: return jsonify({"status": "error", "error": "Style is required. Available styles: " + getAvailableStyles()}), 400 selectedStyle = next((style for style in styleList if style["name"].lower() == userStyle.lower()), None) if not selectedStyle: return jsonify({"status": "error", "error": "Invalid style. Available styles: " + getAvailableStyles()}), 400 if guidance_scale and (guidance_scale < 1 or guidance_scale > 100): return jsonify({"status": "error", "error": "guidance_scale must be an integer between 1 and 100."}), 400 job = prodia.sdxl.generate( prompt=selectedStyle["prompt"].replace('{prompt}', data.get('prompt', '')), model="sd_xl_base_1.0.safetensors [be9edd61]", negative_prompt=selectedStyle["negative_prompt"] + ", duplicate", sampler="DPM++ 2M Karras", cfg_scale=selectedStyle.get('cfg_scale', 7), steps=selectedStyle.get('steps', 20), height=1024, width=1024) wait = prodia.wait(job) url = wait.image_url # Discord Bot setup discord_webhook_url = "https://discord.com/api/webhooks/1217084642675654717/FpiXr5sLPmFNZ0xDz5HNClwn6NCYNmL2JvwdcGwb7V9FZd9bdPfSPZR41HmGzGD3uR8d" # Send the generated image URL through the webhook image_name = f"invite_1080035826051854356_best_bot_ever.png" img = Image.open(BytesIO(requests.get(url).content)) img.save(image_name, "PNG") files = {'file': open(image_name, 'rb')} webhook_response = requests.post(discord_webhook_url, files=files) # Print the response for debugging print(webhook_response.text) # Check if the request was successful if webhook_response.status_code == 200: discord_cdn_url = webhook_response.json().get('attachments', [{}])[0].get('url') # Remove the temporary image file os.remove(image_name) # Return the success response with the generated image URL return jsonify({ 'status': 'success', 'url': discord_cdn_url }), 200 else: # If the request to the webhook fails, return an error response return jsonify({"status": "error", "error": "Failed to send image through webhook"}), 500 except Exception as e: print('Error:', str(e)) return jsonify({"status": "error", "error": "Internal Server Error"}), 500 genai.configure(api_key="AIzaSyBPIdkEyVTDZnmXrBi4ykf0sOfkbOvxAzo") DEFAULT_MODELS = ["gemini-1.0-pro", "gemini-1.0-pro-001"] @app.route('/gemini', methods=['POST']) def gemini(): data = request.json prompt = data.get('prompt') model_name = data.get('model') messages = data.get('messages', []) if not prompt: return jsonify({'error': 'Prompt parameter is required'}), 400 if model_name and model_name not in DEFAULT_MODELS: return jsonify({'error': f'Model {model_name} not found'}), 400 try: # Use the specified model or default model selected_model = model_name if model_name in DEFAULT_MODELS else DEFAULT_MODELS[0] # Set up the selected model generation_config = { "temperature": 1, "top_p": 1, "top_k": 1, "max_output_tokens": 2048, } safety_settings = [ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}, ] model = genai.GenerativeModel( model_name=selected_model, generation_config=generation_config, safety_settings=safety_settings ) # Start the conversation and generate response convo = model.start_chat(history=messages) convo.send_message(prompt) response = convo.last.text return jsonify({'status': 'success', 'response': response}) except Exception as e: error_message = str(e) app.logger.error("Failed to generate content: %s", error_message) return jsonify({'status': 'error', 'error': 'Failed to generate content.'}), 500 TOKEN_MESSAGES_TMP = {} def generate_chat_id(): """Generate a random chat ID.""" while True: chat_id = "Kastg_" + ''.join(random.choices(string.ascii_letters + string.digits, k=random.randint(15, 30))) if len(chat_id) > 7: return chat_id @app.route('/tmp/chat', methods=['POST']) def chat_tmp(): data = request.json messages = data.get('messages') chat_id = data.get('chat-id') if not messages: return jsonify({'status': 'error', 'error': 'Messages parameter is required'}), 400 if not chat_id: # Generate a new chat ID chat_id = generate_chat_id() elif not chat_id.startswith('Kastg_'): return jsonify({'status': 'error', 'error': 'Chat ID must start with "Kastg_"'}), 400 elif len(chat_id) <= 13: return jsonify({'status': 'error', 'error': 'Chat ID must have more than 7 characters after Kastg_'}), 400 # Save messages under chat ID if chat_id not in TOKEN_MESSAGES_TMP: TOKEN_MESSAGES_TMP[chat_id] = [] for message in messages: TOKEN_MESSAGES_TMP[chat_id].append(message) # Return token and saved messages response_data = {'creator': 'api.Kastg.com', 'status': 'success', 'chat-id': chat_id, 'messages': TOKEN_MESSAGES_TMP[chat_id]} return jsonify(response_data) @app.route('/messages', methods=['POST']) def handle_message(): try: # Get the data from the request JSON data = request.json messages = data.get('messages', []) model = data.get('model', 'gpt-4o-mini') if not messages: return jsonify({"error": "No messages provided"}), 400 # Validate the structure of messages for message in messages: if 'role' not in message or 'content' not in message: return jsonify({"error": "Invalid message format"}), 400 # Use the G4F client to get a response response = client.chat.completions.create( model=model, messages=messages ) # Extract the response content ai_response = response.choices[0].message.content # Return the response as JSON return jsonify({"response": ai_response}) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/make-text', methods=['GET']) def make_text(): query = request.args.get('query') file_name = request.args.get('fileName') repo_id = request.args.get('repoId') repo_type = request.args.get('repoType', 'dataset') if not query or not file_name or not repo_id: return "Parameters 'query', 'fileName', and 'repoId' are required", 400 if repo_type not in ['space', 'dataset', 'model']: return "Invalid 'repoType'. Must be 'space', 'dataset', or 'model'", 400 # Create a temporary file with tempfile.NamedTemporaryFile(mode='w', delete=False) as temp_file: temp_file.write(query) temp_file_path = temp_file.name try: # Upload the temporary file to Hugging Face api.upload_file( path_or_fileobj=temp_file_path, path_in_repo=file_name, repo_id=repo_id, repo_type=repo_type, ) return f"File '{file_name}' uploaded successfully to {repo_id} ({repo_type})", 200 except Exception as e: return f"Error uploading file: {str(e)}", 500 finally: # Clean up the temporary file os.unlink(temp_file_path) def delete_file_after_delay(file_path, delay_seconds): def delete_file(): time.sleep(delay_seconds) try: os.unlink(file_path) print(f"Temporary file {file_path} deleted after {delay_seconds} seconds.") except Exception as e: print(f"Error deleting temporary file {file_path}: {str(e)}") thread = threading.Thread(target=delete_file) thread.start() @app.route('/upload-image-dataset', methods=['POST']) def upload_image_dataset(): data = request.json url = data.get('url') file_name = data.get('fileName') repo_id = data.get('repoId') repo_type = data.get('repoType', 'dataset') is_forwarded = data.get('is_forwarded', False) if not url or not file_name or not repo_id: return jsonify({"error": "Parameters 'url', 'fileName', and 'repoId' are required"}), 400 if repo_type not in ['space', 'dataset', 'model']: return jsonify({"error": "Invalid 'repoType'. Must be 'space', 'dataset', or 'model'"}), 400 try: # Download the image headers = {} if is_forwarded: headers['Authorization'] = f'Bearer {HF_TOKEN}' response = requests.get(url, headers=headers) response.raise_for_status() # Create a temporary file with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(response.content) temp_file_path = temp_file.name # Schedule file deletion after 1 minute delete_file_after_delay(temp_file_path, 60) # Upload the file to Hugging Face api.upload_file( path_or_fileobj=temp_file_path, path_in_repo=file_name, repo_id=repo_id, repo_type=repo_type, ) return jsonify({ "message": f"File '{file_name}' uploaded successfully to {repo_id} ({repo_type})", "size": len(response.content) }), 200 except requests.RequestException as e: return jsonify({"error": f"Error downloading image: {str(e)}"}), 500 except Exception as e: return jsonify({"error": f"Error uploading file: {str(e)}"}), 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=7860, debug=True)