Spaces:
Paused
Paused
File size: 7,354 Bytes
4d7cb47 d039d52 4d7cb47 d039d52 c630ad1 d039d52 e04a756 4695331 e04a756 4695331 e04a756 4695331 e04a756 d039d52 c630ad1 4d7cb47 c630ad1 4d7cb47 adc2bc0 4d7cb47 d039d52 4d7cb47 d039d52 4695331 c630ad1 d039d52 c630ad1 d039d52 c630ad1 d039d52 4d7cb47 d039d52 c630ad1 d039d52 4d7cb47 d039d52 4d7cb47 c630ad1 4d7cb47 c630ad1 4d7cb47 c630ad1 d039d52 4d7cb47 d039d52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
from flask import Flask, request, Response
import requests
import json
import time
from openai import OpenAI
app = Flask(__name__)
def get_token():
url = "https://fluxaiweb.com/flux/getToken"
response = requests.get(url)
if response.status_code == 200:
response_json = response.json()
return response_json.get("data", {}).get("token")
return None
def req_flux(token, prompt_value, aspect_ratio="1:1", output_format="webp", num_outputs=1, output_quality=90):
url = "https://fluxaiweb.com/flux/generateImage"
payload = {
"prompt": prompt_value,
"aspectRatio": aspect_ratio,
"outputFormat": output_format,
"numOutputs": num_outputs,
"outputQuality": output_quality
}
headers = {
'Content-Type': 'application/json',
'token': token
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
return data.get("data", {}).get("image")
except requests.exceptions.RequestException as e:
print(f"Error making request: {e}")
return None
def generate_optimized_prompt(api_key, api_base, system_prompt, user_input):
client = OpenAI(api_key=api_key, base_url=api_base)
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
)
return completion.choices[0].message.content
def generate_fake_stream(image_url, optimized_prompt):
chunks = [
"I'm generating an optimized prompt based on your input...",
f"Optimized prompt: {optimized_prompt}",
"Now generating an image based on the optimized prompt...",
"The image is being processed...",
"Almost there...",
f"Image generated successfully! Here it is:\n\n"
]
for i, chunk in enumerate(chunks):
yield f"data: {json.dumps({'id': f'chatcmpl-{int(time.time())}', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': 'flux-ai-image-generator', 'choices': [{'index': 0, 'delta': {'role': 'assistant' if i == 0 else None, 'content': chunk}, 'finish_reason': None if i < len(chunks) - 1 else 'stop'}]})}\n\n"
time.sleep(1) # Simulate processing time
yield "data: [DONE]\n\n"
@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
data = request.json
messages = data.get('messages', [])
stream = data.get('stream', False)
# Extract the prompt from the last user message
user_input = next((msg['content'] for msg in reversed(messages) if msg['role'] == 'user'), None)
if not user_input:
return Response(json.dumps({'error': 'No valid user input provided'}), status=400, mimetype='application/json')
# Generate optimized prompt using GPT-4-mini
'''
secret_variable:
api_key = "" # Replace with your actual API key
api_base = "" # Replace with your actual API base URL
'''
system_prompt = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。提示包括三个部分:前缀(质量标签+风格词+效果器)+ 主题(图像的主要焦点)+ 场景(背景、环境)。前缀影响图像质量。像"masterpiece"、"best quality"、"ultra-detailed"、"high resolution"、"photorealistic" 这样的标签可以显著提高图像的细节和整体质量。像"illustration"、"lensflare"、"cinematic lighting" 这样的风格词定义图像的风格和光影效果。像"best lighting"、"volumetric lighting"、"depth of field" 这样的效果器会影响光照和深度。主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征,同时加入细致的纹理和高光处理。场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"lush greenery"、"golden sunlight"、"crystal clear river" 这样的环境词可以丰富场景,并增强其视觉吸引力。考虑添加天气效果,如"soft morning mist"、"sunset glow" 来进一步增强场景的氛围。你的任务是设计图像生成的提示。请按照以下步骤进行操作:我会发送给您一个图像场景。需要你生成详细的图像描述。图像描述必须是英文,输出为Positive Prompt。确保提示词仅用于描述图像内容,不包含会显示在图像中的文本。示例:我发送:二战时期的护士。您回复只回复:A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, ultra-detailed, high resolution, photorealistic, illustration style, best lighting, volumetric lighting, depth of field, sharp focus, detailed character, richly textured environment."""
optimized_prompt = generate_optimized_prompt(api_key, api_base, system_prompt, user_input)
# Generate image using the optimized prompt
token = get_token()
if not token:
return Response(json.dumps({'error': 'Failed to get token'}), status=500, mimetype='application/json')
image_url = req_flux(token, optimized_prompt)
if not image_url:
return Response(json.dumps({'error': 'Failed to generate image'}), status=500, mimetype='application/json')
if stream:
return Response(generate_fake_stream(image_url, optimized_prompt), mimetype='text/event-stream')
else:
response = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "flux-ai-image-generator",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": f"I've generated an optimized prompt based on your input: '{optimized_prompt}'\n\nUsing this prompt, I've created an image. Here it is:\n\n"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(user_input.split()),
"completion_tokens": len(optimized_prompt.split()) + 20, # Approximate
"total_tokens": len(user_input.split()) + len(optimized_prompt.split()) + 20
}
}
return Response(json.dumps(response), mimetype='application/json')
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |