flux2api / app.py
tianlong12's picture
Update app.py
5de94da verified
from flask import Flask, request, Response
import os
import requests
import json
import time
from openai import OpenAI
app = Flask(__name__)
def get_token():
url = "https://fluxaiweb.com/flux/getToken"
response = requests.get(url)
if response.status_code == 200:
response_json = response.json()
return response_json.get("data", {}).get("token")
return None
def req_flux(token, prompt_value, aspect_ratio="1:1", output_format="webp", num_outputs=1, output_quality=90):
url = "https://fluxaiweb.com/flux/generateImage"
payload = {
"prompt": prompt_value,
"aspectRatio": aspect_ratio,
"outputFormat": output_format,
"numOutputs": num_outputs,
"outputQuality": output_quality
}
headers = {
'Content-Type': 'application/json',
'token': token
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
return data.get("data", {}).get("image")
except requests.exceptions.RequestException as e:
print(f"Error making request: {e}")
return None
def generate_optimized_prompt(api_key, api_base, user_input):
client = OpenAI(api_key=api_key, base_url=api_base)
prompt = (
f"As a Stable Diffusion prompt expert, your task is to directly modify the following sentence: '{user_input}'"
"into a proper Stable Diffusion prompt in English, formatted according to the guidelines provided: "
"1. Create prompts using common vocabulary, arranged by importance and separated by commas. Avoid using '-' or '.', "
"but spaces and natural language are acceptable. Avoid repeating words. "
"2. To emphasize keywords, enclose them in parentheses to increase their weight. For example, '(flowers)' increases "
"the weight of 'flowers' by 1.1 times, '(((flowers)))' increases it by 1.331 times, and '(flowers:1.5)' increases "
"the weight of 'flowers' by 1.5 times. Only increase the weight for important tags. "
"3. The prompt should consist of three parts: prefix (quality tags + style words + effectors), subject "
"(main focus of the image), and scene (background, environment). The prefix affects image quality; tags like "
"'masterpiece,' 'best quality,' and '4k' enhance image detail, style words like 'illustration' and 'lensflare' "
"define the style of the image, and effectors like 'best lighting,' 'lensflare,' and 'depth of field' influence "
"lighting and depth. The subject is the main focus of the image, such as a character or scene. Providing a detailed "
"description of the subject ensures a rich and detailed image, and increasing the subject's weight enhances its clarity. "
"For characters, describe features like the face, hair, body, clothing, and pose. The scene describes the environment; "
"without a scene, the image's background appears plain, making the subject seem overly large. Some subjects inherently "
"include scenes (such as buildings or landscapes), and environmental words like 'flower meadow,' 'sunlight,' and 'river' "
"can enrich the scene. "
"Return only the revised prompt in English."
)
completion = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": user_input}
]
)
return completion.choices[0].message.content
def generate_fake_stream(image_url, optimized_prompt):
chunks = [
"✨ 开始生成...\n正在根据您的输入生成优化提示词...\n",
f"🎨 优化后的提示词:\n{optimized_prompt}\n",
"🖼️ 正在根据优化后的提示词生成图像...\n",
"🔄 图像正在处理中...\n",
"⏳ 即将完成...\n",
f"🌟 生成成功!\n图像生成完毕,以下是结果:\n\n![生成的图像]({image_url})"
]
for i, chunk in enumerate(chunks):
yield f"data: {json.dumps({'id': f'chatcmpl-{int(time.time())}', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': 'flux-ai-image-generator', 'choices': [{'index': 0, 'delta': {'role': 'assistant' if i == 0 else None, 'content': chunk}, 'finish_reason': None if i < len(chunks) - 1 else 'stop'}]})}\n\n"
time.sleep(0.5) # 模拟处理时间
yield "data: [DONE]\n\n"
@app.route('/hf/v1/chat/completions', methods=['POST'])
def chat_completions():
data = request.json
messages = data.get('messages', [])
stream = data.get('stream', False)
# Extract the prompt from the last user message
user_input = next((msg['content'] for msg in reversed(messages) if msg['role'] == 'user'), None)
if not user_input:
return Response(json.dumps({'error': 'No valid user input provided'}), status=400, mimetype='application/json')
# Generate optimized prompt using GPT-4-mini
api_key = os.getenv('api_key')
api_base = os.getenv('api_base')
optimized_prompt = generate_optimized_prompt(api_key, api_base, user_input)
# Generate image using the optimized prompt
token = get_token()
if not token:
return Response(json.dumps({'error': 'Failed to get token'}), status=500, mimetype='application/json')
image_url = req_flux(token, optimized_prompt)
if not image_url:
return Response(json.dumps({'error': 'Failed to generate image'}), status=500, mimetype='application/json')
if stream:
return Response(generate_fake_stream(image_url, optimized_prompt), mimetype='text/event-stream')
else:
response = {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "flux-ai-image-generator",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": f"I've generated an optimized prompt based on your input: '{optimized_prompt}'\n\nUsing this prompt, I've created an image. Here it is:\n\n![Generated Image]({image_url})"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": len(user_input.split()),
"completion_tokens": len(optimized_prompt.split()) + 20, # Approximate
"total_tokens": len(user_input.split()) + len(optimized_prompt.split()) + 20
}
}
return Response(json.dumps(response), mimetype='application/json')
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)