Spaces:
Running
Running
from flask import Flask, request, Response | |
import os | |
import requests | |
import json | |
import time | |
from openai import OpenAI | |
app = Flask(__name__) | |
def get_token(): | |
url = "https://fluxaiweb.com/flux/getToken" | |
response = requests.get(url) | |
if response.status_code == 200: | |
response_json = response.json() | |
return response_json.get("data", {}).get("token") | |
return None | |
def req_flux(token, prompt_value, aspect_ratio="1:1", output_format="webp", num_outputs=1, output_quality=90): | |
url = "https://fluxaiweb.com/flux/generateImage" | |
payload = { | |
"prompt": prompt_value, | |
"aspectRatio": aspect_ratio, | |
"outputFormat": output_format, | |
"numOutputs": num_outputs, | |
"outputQuality": output_quality | |
} | |
headers = { | |
'Content-Type': 'application/json', | |
'token': token | |
} | |
try: | |
response = requests.post(url, headers=headers, json=payload) | |
response.raise_for_status() | |
data = response.json() | |
return data.get("data", {}).get("image") | |
except requests.exceptions.RequestException as e: | |
print(f"Error making request: {e}") | |
return None | |
def generate_optimized_prompt(api_key, api_base, user_input): | |
client = OpenAI(api_key=api_key, base_url=api_base) | |
prompt = ( | |
f"As a Stable Diffusion prompt expert, your task is to directly modify the following sentence: '{user_input}'" | |
"into a proper Stable Diffusion prompt in English, formatted according to the guidelines provided: " | |
"1. Create prompts using common vocabulary, arranged by importance and separated by commas. Avoid using '-' or '.', " | |
"but spaces and natural language are acceptable. Avoid repeating words. " | |
"2. To emphasize keywords, enclose them in parentheses to increase their weight. For example, '(flowers)' increases " | |
"the weight of 'flowers' by 1.1 times, '(((flowers)))' increases it by 1.331 times, and '(flowers:1.5)' increases " | |
"the weight of 'flowers' by 1.5 times. Only increase the weight for important tags. " | |
"3. The prompt should consist of three parts: prefix (quality tags + style words + effectors), subject " | |
"(main focus of the image), and scene (background, environment). The prefix affects image quality; tags like " | |
"'masterpiece,' 'best quality,' and '4k' enhance image detail, style words like 'illustration' and 'lensflare' " | |
"define the style of the image, and effectors like 'best lighting,' 'lensflare,' and 'depth of field' influence " | |
"lighting and depth. The subject is the main focus of the image, such as a character or scene. Providing a detailed " | |
"description of the subject ensures a rich and detailed image, and increasing the subject's weight enhances its clarity. " | |
"For characters, describe features like the face, hair, body, clothing, and pose. The scene describes the environment; " | |
"without a scene, the image's background appears plain, making the subject seem overly large. Some subjects inherently " | |
"include scenes (such as buildings or landscapes), and environmental words like 'flower meadow,' 'sunlight,' and 'river' " | |
"can enrich the scene. " | |
"Return only the revised prompt in English." | |
) | |
completion = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[ | |
{"role": "system", "content": prompt}, | |
{"role": "user", "content": user_input} | |
] | |
) | |
return completion.choices[0].message.content | |
def generate_fake_stream(image_url, optimized_prompt): | |
chunks = [ | |
"✨ 开始生成...\n正在根据您的输入生成优化提示词...\n", | |
f"🎨 优化后的提示词:\n{optimized_prompt}\n", | |
"🖼️ 正在根据优化后的提示词生成图像...\n", | |
"🔄 图像正在处理中...\n", | |
"⏳ 即将完成...\n", | |
f"🌟 生成成功!\n图像生成完毕,以下是结果:\n\n" | |
] | |
for i, chunk in enumerate(chunks): | |
yield f"data: {json.dumps({'id': f'chatcmpl-{int(time.time())}', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': 'flux-ai-image-generator', 'choices': [{'index': 0, 'delta': {'role': 'assistant' if i == 0 else None, 'content': chunk}, 'finish_reason': None if i < len(chunks) - 1 else 'stop'}]})}\n\n" | |
time.sleep(0.5) # 模拟处理时间 | |
yield "data: [DONE]\n\n" | |
def chat_completions(): | |
data = request.json | |
messages = data.get('messages', []) | |
stream = data.get('stream', False) | |
# Extract the prompt from the last user message | |
user_input = next((msg['content'] for msg in reversed(messages) if msg['role'] == 'user'), None) | |
if not user_input: | |
return Response(json.dumps({'error': 'No valid user input provided'}), status=400, mimetype='application/json') | |
# Generate optimized prompt using GPT-4-mini | |
api_key = os.getenv('api_key') | |
api_base = os.getenv('api_base') | |
optimized_prompt = generate_optimized_prompt(api_key, api_base, user_input) | |
# Generate image using the optimized prompt | |
token = get_token() | |
if not token: | |
return Response(json.dumps({'error': 'Failed to get token'}), status=500, mimetype='application/json') | |
image_url = req_flux(token, optimized_prompt) | |
if not image_url: | |
return Response(json.dumps({'error': 'Failed to generate image'}), status=500, mimetype='application/json') | |
if stream: | |
return Response(generate_fake_stream(image_url, optimized_prompt), mimetype='text/event-stream') | |
else: | |
response = { | |
"id": f"chatcmpl-{int(time.time())}", | |
"object": "chat.completion", | |
"created": int(time.time()), | |
"model": "flux-ai-image-generator", | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": f"I've generated an optimized prompt based on your input: '{optimized_prompt}'\n\nUsing this prompt, I've created an image. Here it is:\n\n" | |
}, | |
"finish_reason": "stop" | |
} | |
], | |
"usage": { | |
"prompt_tokens": len(user_input.split()), | |
"completion_tokens": len(optimized_prompt.split()) + 20, # Approximate | |
"total_tokens": len(user_input.split()) + len(optimized_prompt.split()) + 20 | |
} | |
} | |
return Response(json.dumps(response), mimetype='application/json') | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=7860) |