tianlong12 commited on
Commit
be2bddc
·
verified ·
1 Parent(s): d618555

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -18
app.py CHANGED
@@ -1,16 +1,48 @@
 
 
1
  from flask import Flask, request, Response
2
- import os
3
  import requests
4
- import json
5
  import time
6
  from openai import OpenAI
7
 
8
  app = Flask(__name__)
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  def get_token():
11
  url = "https://fluxaiweb.com/flux/getToken"
12
- response = requests.get(url)
13
- if response.status_code == 200:
14
  response_json = response.json()
15
  return response_json.get("data", {}).get("token")
16
  return None
@@ -28,14 +60,11 @@ def req_flux(token, prompt_value, aspect_ratio="1:1", output_format="webp", num_
28
  'Content-Type': 'application/json',
29
  'token': token
30
  }
31
- try:
32
- response = requests.post(url, headers=headers, json=payload)
33
- response.raise_for_status()
34
  data = response.json()
35
  return data.get("data", {}).get("image")
36
- except requests.exceptions.RequestException as e:
37
- print(f"Error making request: {e}")
38
- return None
39
 
40
  def generate_optimized_prompt(api_key, api_base, system_prompt, user_input):
41
  client = OpenAI(api_key=api_key, base_url=api_base)
@@ -71,27 +100,35 @@ def chat_completions():
71
  messages = data.get('messages', [])
72
  stream = data.get('stream', False)
73
 
74
- # Extract the prompt from the last user message
75
  user_input = next((msg['content'] for msg in reversed(messages) if msg['role'] == 'user'), None)
76
 
77
  if not user_input:
78
  return Response(json.dumps({'error': 'No valid user input provided'}), status=400, mimetype='application/json')
79
 
80
- # Generate optimized prompt using GPT-4-mini
81
- #api_key变量从环境变量获取
82
  api_key = os.getenv('api_key')
83
  api_base = os.getenv('api_base')
84
  system_prompt = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。提示包括三个部分:前缀(质量标签+风格词+效果器)+ 主题(图像的主要焦点)+ 场景(背景、环境)。前缀影响图像质量。像"masterpiece"、"best quality"、"ultra-detailed"、"high resolution"、"photorealistic" 这样的标签可以显著提高图像的细节和整体质量。像"illustration"、"lensflare"、"cinematic lighting" 这样的风格词定义图像的风格和光影效果。像"best lighting"、"volumetric lighting"、"depth of field" 这样的效果器会影响光照和深度。主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征,同时加入细致的纹理和高光处理。场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"lush greenery"、"golden sunlight"、"crystal clear river" 这样的环境词可以丰富场景,并增强其视觉吸引力。考虑添加天气效果,如"soft morning mist"、"sunset glow" 来进一步增强场景的氛围。你的任务是设计图像生成的提示。请按照以下步骤进行操作:我会发送给您一个图像场景。需要你生成详细的图像描述。图像描述必须是英文,输出为Positive Prompt。确保提示词仅用于描述图像内容,不包含会显示在图像中的文本。示例:我发送:二战时期的护士。您回复只回复:A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, ultra-detailed, high resolution, photorealistic, illustration style, best lighting, volumetric lighting, depth of field, sharp focus, detailed character, richly textured environment."""
85
  optimized_prompt = generate_optimized_prompt(api_key, api_base, system_prompt, user_input)
86
 
87
- # Generate image using the optimized prompt
88
- token = get_token()
 
 
 
 
 
89
  if not token:
90
- return Response(json.dumps({'error': 'Failed to get token'}), status=500, mimetype='application/json')
91
 
92
- image_url = req_flux(token, optimized_prompt)
 
 
 
 
 
 
93
  if not image_url:
94
- return Response(json.dumps({'error': 'Failed to generate image'}), status=500, mimetype='application/json')
95
 
96
  if stream:
97
  return Response(generate_fake_stream(image_url, optimized_prompt), mimetype='text/event-stream')
 
1
+ import json
2
+ import random
3
  from flask import Flask, request, Response
 
4
  import requests
 
5
  import time
6
  from openai import OpenAI
7
 
8
  app = Flask(__name__)
9
 
10
+ # 解析JSON数据并创建代理池
11
+ with open('proxy_list.json', 'r') as f:
12
+ proxy_data = json.load(f)
13
+
14
+ proxy_pool = {}
15
+ for country, proxies in proxy_data['proxy_list'].items():
16
+ proxy_pool[country] = [
17
+ {
18
+ 'url': f"{p['type'].lower()}://{p['host']}:{p['port']}",
19
+ 'type': p['type'].lower()
20
+ } for p in proxies
21
+ ]
22
+
23
+ def get_random_proxy(country=None):
24
+ if country and country in proxy_pool:
25
+ return random.choice(proxy_pool[country])
26
+ else:
27
+ all_proxies = [proxy for proxies in proxy_pool.values() for proxy in proxies]
28
+ return random.choice(all_proxies)
29
+
30
+ def make_request_with_proxy(method, url, **kwargs):
31
+ proxy = get_random_proxy()
32
+ proxies = {proxy['type']: proxy['url']}
33
+
34
+ try:
35
+ response = requests.request(method, url, proxies=proxies, timeout=30, **kwargs)
36
+ response.raise_for_status()
37
+ return response
38
+ except requests.exceptions.RequestException as e:
39
+ print(f"Error with proxy {proxy['url']}: {e}")
40
+ return None
41
+
42
  def get_token():
43
  url = "https://fluxaiweb.com/flux/getToken"
44
+ response = make_request_with_proxy('GET', url)
45
+ if response and response.status_code == 200:
46
  response_json = response.json()
47
  return response_json.get("data", {}).get("token")
48
  return None
 
60
  'Content-Type': 'application/json',
61
  'token': token
62
  }
63
+ response = make_request_with_proxy('POST', url, headers=headers, json=payload)
64
+ if response:
 
65
  data = response.json()
66
  return data.get("data", {}).get("image")
67
+ return None
 
 
68
 
69
  def generate_optimized_prompt(api_key, api_base, system_prompt, user_input):
70
  client = OpenAI(api_key=api_key, base_url=api_base)
 
100
  messages = data.get('messages', [])
101
  stream = data.get('stream', False)
102
 
 
103
  user_input = next((msg['content'] for msg in reversed(messages) if msg['role'] == 'user'), None)
104
 
105
  if not user_input:
106
  return Response(json.dumps({'error': 'No valid user input provided'}), status=400, mimetype='application/json')
107
 
 
 
108
  api_key = os.getenv('api_key')
109
  api_base = os.getenv('api_base')
110
  system_prompt = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。提示包括三个部分:前缀(质量标签+风格词+效果器)+ 主题(图像的主要焦点)+ 场景(背景、环境)。前缀影响图像质量。像"masterpiece"、"best quality"、"ultra-detailed"、"high resolution"、"photorealistic" 这样的标签可以显著提高图像的细节和整体质量。像"illustration"、"lensflare"、"cinematic lighting" 这样的风格词定义图像的风格和光影效果。像"best lighting"、"volumetric lighting"、"depth of field" 这样的效果器会影响光照和深度。主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征,同时加入细致的纹理和高光处理。场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"lush greenery"、"golden sunlight"、"crystal clear river" 这样的环境词可以丰富场景,并增强其视觉吸引力。考虑添加天气效果,如"soft morning mist"、"sunset glow" 来进一步增强场景的氛围。你的任务是设计图像生成的提示。请按照以下步骤进行操作:我会发送给您一个图像场景。需要你生成详细的图像描述。图像描述必须是英文,输出为Positive Prompt。确保提示词仅用于描述图像内容,不包含会显示在图像中的文本。示例:我发送:二战时期的护士。您回复只回复:A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, ultra-detailed, high resolution, photorealistic, illustration style, best lighting, volumetric lighting, depth of field, sharp focus, detailed character, richly textured environment."""
111
  optimized_prompt = generate_optimized_prompt(api_key, api_base, system_prompt, user_input)
112
 
113
+ token = None
114
+ for _ in range(3): # 尝试最多3次
115
+ token = get_token()
116
+ if token:
117
+ break
118
+ time.sleep(1) # 在重试之前等待1秒
119
+
120
  if not token:
121
+ return Response(json.dumps({'error': 'Failed to get token after multiple attempts'}), status=500, mimetype='application/json')
122
 
123
+ image_url = None
124
+ for _ in range(3): # 尝试最多3次
125
+ image_url = req_flux(token, optimized_prompt)
126
+ if image_url:
127
+ break
128
+ time.sleep(1) # 在重试之前等待1秒
129
+
130
  if not image_url:
131
+ return Response(json.dumps({'error': 'Failed to generate image after multiple attempts'}), status=500, mimetype='application/json')
132
 
133
  if stream:
134
  return Response(generate_fake_stream(image_url, optimized_prompt), mimetype='text/event-stream')