File size: 2,635 Bytes
8d1ecb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import requests
from flask import Flask, request, Response, stream_with_context, jsonify
import json

app = Flask(__name__)

DEEPINFRA_API_URL = "https://api.deepinfra.com/v1/openai/chat/completions"
API_KEY = os.environ.get("API_KEY")

def authenticate():
    auth_header = request.headers.get("Authorization")
    if not auth_header or not auth_header.startswith("Bearer "):
        return False
    token = auth_header.split(" ")[1]
    return token == API_KEY

@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
    if not authenticate():
        return jsonify({"error": "Unauthorized"}), 401

    # 获取OpenAI格式的请求
    openai_request = request.json

    # 转换为DeepInfra格式
    deepinfra_request = {
        "model": openai_request.get("model", "meta-llama/Meta-Llama-3.1-70B-Instruct"),
        "temperature": openai_request.get("temperature", 0.7),
        "max_tokens": openai_request.get("max_tokens", 1000),
        "stream": openai_request.get("stream", False),
        "messages": openai_request.get("messages", [])
    }

    headers = {
        "Content-Type": "application/json",
        "Accept": "text/event-stream" if deepinfra_request["stream"] else "application/json"
    }

    # 发送请求到DeepInfra API
    response = requests.post(DEEPINFRA_API_URL, json=deepinfra_request, headers=headers, stream=True)

    if deepinfra_request["stream"]:
        # 流式响应
        def generate():
            for line in response.iter_lines():
                if line:
                    yield f"data: {line.decode('utf-8')}\n\n"
        return Response(stream_with_context(generate()), content_type='text/event-stream')
    else:
        # 非流式响应
        deepinfra_response = response.json()
        openai_response = {
            "id": deepinfra_response.get("id", ""),
            "object": "chat.completion",
            "created": deepinfra_response.get("created", 0),
            "model": deepinfra_response.get("model", ""),
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": deepinfra_response["choices"][0]["message"]["content"]
                    },
                    "finish_reason": deepinfra_response["choices"][0].get("finish_reason", "stop")
                }
            ],
            "usage": deepinfra_response.get("usage", {})
        }
        return json.dumps(openai_response), 200, {'Content-Type': 'application/json'}

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)