import os import threading import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ os.environ["HF_HOME"] = "/tmp/huggingface" os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" MODEL_ID = os.getenv("MODEL_ID", "tianzhechu/BookQA-7B-Instruct") TOKENIZER_ID = os.getenv("TOKENIZER_ID", "Qwen/Qwen2.5-0.5B-Instruct") # Optional: tokenizer repo to use locally USE_LOCAL_TRANSFORMERS = bool(TOKENIZER_ID) or os.getenv("USE_LOCAL_TRANSFORMERS") == "1" # Remote inference (default) client = None if USE_LOCAL_TRANSFORMERS else InferenceClient(MODEL_ID) # Lazy-loaded local model/tokenizer when TOKENIZER_ID is provided local_model = None local_tokenizer = None def _ensure_local_model_loaded(): global local_model, local_tokenizer if local_model is not None and local_tokenizer is not None: return from transformers import AutoModelForCausalLM, AutoTokenizer if not TOKENIZER_ID: raise RuntimeError( "Local transformers backend requires TOKENIZER_ID to be set to a tokenizer repo." ) local_tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_ID, use_fast=True) local_model = AutoModelForCausalLM.from_pretrained(MODEL_ID) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" if not USE_LOCAL_TRANSFORMERS: for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content if token: response += token yield response return # Local generation using transformers with an alternate tokenizer _ensure_local_model_loaded() try: from transformers import TextIteratorStreamer except Exception as e: raise RuntimeError( "transformers TextIteratorStreamer is required for local streaming; ensure transformers is installed." ) from e # Use chat template if available; otherwise fall back to a simple concatenation try: prompt_text = local_tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) except Exception: convo_parts = [] for m in messages: role = m.get("role", "user") content = m.get("content", "") if role == "system": convo_parts.append(f"\n{content}\n") elif role == "assistant": convo_parts.append(f"\n{content}\n") else: convo_parts.append(f"\n{content}\n") prompt_text = "\n".join(convo_parts) + "\n\n" inputs = local_tokenizer(prompt_text, return_tensors="pt") streamer = TextIteratorStreamer( local_tokenizer, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( inputs=inputs.input_ids, attention_mask=inputs.get("attention_mask"), max_new_tokens=max_tokens, do_sample=temperature > 0, temperature=temperature, top_p=top_p, streamer=streamer, ) thread = threading.Thread(target=local_model.generate, kwargs=generate_kwargs) thread.start() for new_text in streamer: if new_text: response += new_text yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()