tianzhechu commited on
Commit
c129502
·
1 Parent(s): bd4ab2f
Files changed (1) hide show
  1. src/streamlit_app.py +18 -34
src/streamlit_app.py CHANGED
@@ -1,40 +1,24 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
5
 
6
- """
7
- # Welcome to Streamlit!
 
 
 
8
 
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
 
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
 
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
 
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
3
 
4
+ @st.cache_resource
5
+ def load_model():
6
+ tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
7
+ model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
8
+ return pipeline("text2text-generation", model=model, tokenizer=tokenizer)
9
 
10
+ st.set_page_config(page_title="LLM Demo", layout="centered")
11
+ st.title("🚀 FLAN-T5 Small - HuggingFace Demo")
 
12
 
13
+ pipe = load_model()
 
14
 
15
+ user_input = st.text_area("Enter your instruction or question:", "")
 
16
 
17
+ if st.button("Generate Response"):
18
+ if user_input.strip() == "":
19
+ st.warning("Please enter some text.")
20
+ else:
21
+ with st.spinner("Generating..."):
22
+ output = pipe(user_input, max_new_tokens=100)[0]["generated_text"]
23
+ st.success("### Response:")
24
+ st.write(output)