tincri commited on
Commit
4fe8583
1 Parent(s): 1239093

update fix #2

Browse files
Files changed (1) hide show
  1. app.py +7 -10
app.py CHANGED
@@ -9,7 +9,6 @@ decoder = load_model("models/decoder.h5")
9
 
10
  latent_dim = 128
11
 
12
- img_size = (224, 224)
13
 
14
  def add_gaussian_noise(image, noise_factor=0.2):
15
  noisy_image = image + noise_factor * np.random.normal(size=image.shape)
@@ -17,16 +16,13 @@ def add_gaussian_noise(image, noise_factor=0.2):
17
  return noisy_image
18
 
19
  def denoise_and_generate(image, num_images):
20
- # Redimensionar la imagen al tama帽o esperado
21
- image = cv2.resize(np.array(image), img_size) / 255.0 # Normalizar a [0,1]
22
-
23
- noisy_image = add_gaussian_noise(np.expand_dims(image, axis=0)) # A帽adir ruido
24
-
25
  denoised_image = autoencoder.predict(noisy_image).squeeze()
26
- denoised_image = (denoised_image * 255).astype(np.uint8) # Convertir a uint8
27
 
28
- noisy_image_display = (noisy_image.squeeze() * 255).astype(np.uint8) # Convertir a uint8
29
-
30
  # Genera im谩genes con el VAE
31
  random_latent_vectors = np.random.normal(size=(num_images, latent_dim))
32
  generated_images = decoder.predict(random_latent_vectors)
@@ -36,6 +32,7 @@ def denoise_and_generate(image, num_images):
36
 
37
  return outputs
38
 
 
39
  # Define la interfaz
40
  inputs = [
41
  gr.Image(label="Imagen de Entrada"),
@@ -60,4 +57,4 @@ interface = gr.Interface(
60
 
61
  # Lanza la aplicaci贸n
62
  if __name__ == "__main__":
63
- interface.launch(share=True)
 
9
 
10
  latent_dim = 128
11
 
 
12
 
13
  def add_gaussian_noise(image, noise_factor=0.2):
14
  noisy_image = image + noise_factor * np.random.normal(size=image.shape)
 
16
  return noisy_image
17
 
18
  def denoise_and_generate(image, num_images):
19
+ image = np.array(image) / 255.0
20
+ image = tf.image.resize(image, (224, 224)) # Redimensionar la imagen
21
+ noisy_image = add_gaussian_noise(np.expand_dims(image, axis=0))
22
+
 
23
  denoised_image = autoencoder.predict(noisy_image).squeeze()
24
+ denoised_image = (denoised_image * 255).astype(np.uint8)
25
 
 
 
26
  # Genera im谩genes con el VAE
27
  random_latent_vectors = np.random.normal(size=(num_images, latent_dim))
28
  generated_images = decoder.predict(random_latent_vectors)
 
32
 
33
  return outputs
34
 
35
+
36
  # Define la interfaz
37
  inputs = [
38
  gr.Image(label="Imagen de Entrada"),
 
57
 
58
  # Lanza la aplicaci贸n
59
  if __name__ == "__main__":
60
+ interface.launch(share=True)