fix #1
Browse files- app.py +2 -5
- autoencoder.h5 → models/autoencoder.h5 +0 -0
- decoder.h5 → models/decoder.h5 +0 -0
- requirements.txt +4 -4
app.py
CHANGED
@@ -3,8 +3,8 @@ import gradio as gr
|
|
3 |
from tensorflow.keras.models import load_model
|
4 |
|
5 |
# Carga los modelos previamente entrenados
|
6 |
-
autoencoder = load_model("autoencoder.h5")
|
7 |
-
decoder = load_model("decoder.h5")
|
8 |
|
9 |
latent_dim = 128
|
10 |
|
@@ -26,9 +26,6 @@ def denoise_and_generate(image, num_images):
|
|
26 |
# Prepara las imágenes para devolverlas
|
27 |
outputs = [denoised_image] + [generated_images[i].squeeze() for i in range(num_images)]
|
28 |
|
29 |
-
# Rellena los valores faltantes para que siempre haya 11 valores
|
30 |
-
outputs += [None] * (11 - len(outputs))
|
31 |
-
|
32 |
return outputs
|
33 |
|
34 |
# Define la interfaz
|
|
|
3 |
from tensorflow.keras.models import load_model
|
4 |
|
5 |
# Carga los modelos previamente entrenados
|
6 |
+
autoencoder = load_model("models/autoencoder.h5")
|
7 |
+
decoder = load_model("models/decoder.h5")
|
8 |
|
9 |
latent_dim = 128
|
10 |
|
|
|
26 |
# Prepara las imágenes para devolverlas
|
27 |
outputs = [denoised_image] + [generated_images[i].squeeze() for i in range(num_images)]
|
28 |
|
|
|
|
|
|
|
29 |
return outputs
|
30 |
|
31 |
# Define la interfaz
|
autoencoder.h5 → models/autoencoder.h5
RENAMED
File without changes
|
decoder.h5 → models/decoder.h5
RENAMED
File without changes
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
tensorflow
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
1 |
+
tensorflow
|
2 |
+
tensorflow-cpu
|
3 |
+
gradio
|
4 |
+
numpy
|