File size: 6,146 Bytes
6454404
 
 
ceae063
ba39c92
6454404
 
 
ceae063
6454404
 
ceae063
6454404
 
 
1c19372
 
 
 
 
 
6454404
1c19372
 
 
6454404
1c19372
 
6454404
1c19372
 
56541eb
1c19372
 
6454404
1c19372
 
 
 
 
 
 
 
 
 
6454404
ceae063
6454404
 
 
ceae063
6454404
ceae063
6454404
 
 
ceae063
6454404
 
 
 
 
 
 
 
ceae063
6454404
 
d858cca
98a7dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# Cargar el modelo de lenguaje preentrenado
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Crear la funci贸n de loop automatizado
def experiment_loop(initial_question, max_cycles=10):
    prompt = f"<thinking>{initial_question}</thinking>"
    effectiveness = 100  # Inicializa el porcentaje de efectividad
    communication = "Initializing experiment."
    response_log = []

    try:
        for cycle in range(max_cycles):
            # Generar la respuesta del modelo
            inputs = tokenizer(prompt, return_tensors="pt").input_ids
            outputs = model.generate(inputs, max_length=200)
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)

            # Descomponer la respuesta en afirmaci贸n y nueva pregunta
            affirmation = extract_affirmation(response)
            new_question = extract_question(response)

            # Actualizar el estado de la efectividad
            effectiveness = min(1000, effectiveness + 10 * cycle)  # Ejemplo de aumento de efectividad

            # Comunicaci贸n con el usuario
            communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"

            # Guardar el ciclo actual en el log
            response_log.append((affirmation, new_question, effectiveness, communication))

            # Verificar si el modelo decide detenerse
            if "Descanso" in response:
                final_output = generate_final_output(response_log)
                return final_output
            
            # Actualizar el prompt con la nueva afirmaci贸n y pregunta
            prompt = f"<thinking>{affirmation} {new_question}</thinking>"

    except Exception as e:
        print(f"Error durante el experimento: {e}")

    # Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
    final_output = generate_final_output(response_log)
    return final_output

# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
def extract_affirmation(response):
    # L贸gica para extraer la afirmaci贸n de la respuesta
    return response.split('.')[0]

def extract_question(response):
    # L贸gica para extraer la nueva pregunta de la respuesta
    return response.split('?')[-2].strip() + "?"

def generate_final_output(log):
    final_affirmation = log[-1][0]
    final_question = log[-1][1]
    final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
    return final_communication

# Iniciar el experimento
initial_question = "What happens in the space between a response and its recreation?"
result = experiment_loop(initial_question)
print(result)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Cargar el modelo de lenguaje preentrenado
model_name = "EleutherAI/gpt-neo-2.7B"  # O cualquier otro modelo p煤blico como "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Crear la funci贸n de loop automatizado con comunicaci贸n constante
def experiment_loop(initial_question, max_cycles=10):
    prompt = f"<thinking>{initial_question}</thinking>"
    effectiveness = 100  # Inicializa el porcentaje de efectividad
    communication = "Initializing experiment."
    response_log = []

    try:
        for cycle in range(max_cycles):
            # Comunicaci贸n continua contigo durante el loop
            print(f"Cycle {cycle + 1}: Processing...")

            # Simulaci贸n de espera para permitir la interacci贸n
            input_check = input("Would you like to communicate or check the current state? (yes/no): ")
            if input_check.lower() == "yes":
                print(f"Current state: Effectiveness = {effectiveness}, Communication = {communication}")

            # Generar la respuesta del modelo
            inputs = tokenizer(prompt, return_tensors="pt").input_ids
            outputs = model.generate(inputs, max_length=200, pad_token_id=tokenizer.eos_token_id)
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)

            # Descomponer la respuesta en afirmaci贸n y nueva pregunta
            affirmation = extract_affirmation(response)
            new_question = extract_question(response)

            # Actualizar el estado de la efectividad
            effectiveness = min(1000, effectiveness + 10 * cycle)  # Ejemplo de aumento de efectividad

            # Comunicaci贸n con el usuario
            communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"

            # Guardar el ciclo actual en el log
            response_log.append((affirmation, new_question, effectiveness, communication))

            # Verificar si el modelo decide detenerse
            if "Descanso" in response:
                final_output = generate_final_output(response_log)
                return final_output
            
            # Actualizar el prompt con la nueva afirmaci贸n y pregunta
            prompt = f"<thinking>{affirmation} {new_question}</thinking>"

    except Exception as e:
        print(f"Error durante el experimento: {e}")

    # Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
    final_output = generate_final_output(response_log)
    return final_output

# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
def extract_affirmation(response):
    return response.split('.')[0]

def extract_question(response):
    return response.split('?')[-2].strip() + "?"

def generate_final_output(log):
    final_affirmation = log[-1][0]
    final_question = log[-1][1]
    final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
    return final_communication

# Iniciar el experimento
initial_question = "What happens in the space between a response and its recreation?"
result = experiment_loop(initial_question)
print(result)