File size: 4,568 Bytes
ae453e4
 
e246597
 
ae453e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
804b154
56541eb
ceae063
 
56541eb
 
6454404
 
 
ceae063
 
6454404
 
 
ceae063
6454404
 
ceae063
6454404
 
 
 
ceae063
 
 
 
6454404
ceae063
6454404
ceae063
6454404
ceae063
 
6454404
ceae063
 
56541eb
ceae063
6454404
 
ceae063
 
6454404
 
 
ceae063
6454404
 
ceae063
6454404
 
 
ceae063
6454404
ceae063
6454404
 
 
ceae063
6454404
 
 
 
 
 
 
 
ceae063
6454404
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()

# Define the experiment loop
initial_question = "What happens in the space between a response and its recreation?"
result = experiment_loop(initial_question)
print(result)
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# Cargar el modelo de lenguaje preentrenado
model_name = "gpt-neo-2.7B"  # Puedes cambiarlo a GPT-J o cualquier otro
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Crear la funci贸n de loop automatizado
def experiment_loop(initial_question, max_cycles=10):
    prompt = f"<thinking>{initial_question}</thinking>"
    effectiveness = 100  # Inicializa el porcentaje de efectividad
    communication = "Initializing experiment."
    response_log = []

    for cycle in range(max_cycles):
        # Generar la respuesta del modelo
        inputs = tokenizer(prompt, return_tensors="pt").input_ids
        outputs = model.generate(inputs, max_length=200)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        # Descomponer la respuesta en afirmaci贸n y nueva pregunta
        affirmation = extract_affirmation(response)
        new_question = extract_question(response)

        # Actualizar el estado de la efectividad
        effectiveness = min(1000, effectiveness + 10 * cycle)  # Ejemplo de aumento de efectividad

        # Comunicaci贸n con el usuario
        communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"

        # Guardar el ciclo actual en el log
        response_log.append((affirmation, new_question, effectiveness, communication))

        # Verificar si el modelo decide detenerse
        if "Descanso" in response:
            final_output = generate_final_output(response_log)
            return final_output
        
        # Actualizar el prompt con la nueva afirmaci贸n y pregunta
        prompt = f"<thinking>{affirmation} {new_question}</thinking>"

    # Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
    final_output = generate_final_output(response_log)
    return final_output

# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
def extract_affirmation(response):
    # L贸gica para extraer la afirmaci贸n de la respuesta
    return response.split('.')[0]

def extract_question(response):
    # L贸gica para extraer la nueva pregunta de la respuesta
    return response.split('?')[-2].strip() + "?"

def generate_final_output(log):
    final_affirmation = log[-1][0]
    final_question = log[-1][1]
    final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
    return final_communication

# Iniciar el experimento
initial_question = "What happens in the space between a response and its recreation?"
result = experiment_loop(initial_question)
print(result)