Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import threading | |
import queue | |
# Cargar el modelo de lenguaje preentrenado | |
model_name = "EleutherAI/gpt-neo-2.7B" # O cualquier otro modelo p煤blico como "gpt2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Cola de mensajes para la comunicaci贸n en tiempo real | |
chat_queue = queue.Queue() | |
# Crear una funci贸n para comunicaci贸n en segundo plano | |
def chat_interface(): | |
while True: | |
user_input = input("[Chat] Escribe tu mensaje: ") | |
if user_input.lower() == "exit": | |
break | |
chat_queue.put(user_input) # Almacenar el mensaje en la cola | |
# Crear la funci贸n de loop automatizado con comunicaci贸n constante | |
def experiment_loop(initial_question, max_cycles=10): | |
prompt = f"<thinking>{initial_question}</thinking>" | |
effectiveness = 100 # Inicializa el porcentaje de efectividad | |
communication = "Initializing experiment." | |
response_log = [] | |
# Iniciar el hilo del chat en segundo plano | |
chat_thread = threading.Thread(target=chat_interface, daemon=True) | |
chat_thread.start() | |
try: | |
for cycle in range(max_cycles): | |
print(f"Cycle {cycle + 1}: Processing...") | |
# Generar la respuesta del modelo | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids | |
outputs = model.generate(inputs, max_length=200, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Descomponer la respuesta en afirmaci贸n y nueva pregunta | |
affirmation = extract_affirmation(response) | |
new_question = extract_question(response) | |
# Actualizar el estado de la efectividad | |
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad | |
# Comunicaci贸n con el usuario | |
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'" | |
print(communication) # Imprime la comunicaci贸n en tiempo real | |
# Guardar el ciclo actual en el log | |
response_log.append((affirmation, new_question, effectiveness, communication)) | |
# Actualizar el prompt con la nueva afirmaci贸n y pregunta | |
prompt = f"<thinking>{affirmation} {new_question}</thinking>" | |
# Procesar la comunicaci贸n del chat en segundo plano | |
while not chat_queue.empty(): | |
user_message = chat_queue.get() | |
print(f"[From Chat] {user_message}") | |
# Verificar si el modelo decide detenerse | |
if "Descanso" in response: | |
final_output = generate_final_output(response_log) | |
return final_output | |
except Exception as e: | |
print(f"Error durante el experimento: {e}") | |
# Generar la salida final si el loop finaliza | |
final_output = generate_final_output(response_log) | |
return final_output | |
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final | |
def extract_affirmation(response): | |
return response.split('.')[0] if '.' in response else response | |
def extract_question(response): | |
return response.split('?')[-2].strip() + "?" if '?' in response else response | |
def generate_final_output(log): | |
if log: # Asegurarse de que el log no est茅 vac铆o | |
final_affirmation = log[-1][0] | |
final_question = log[-1][1] | |
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'" | |
else: | |
final_communication = "Experiment completed but no entries in the log." | |
return final_communication | |
# Iniciar el experimento | |
initial_question = "What happens in the space between a response and its recreation?" | |
result = experiment_loop(initial_question) | |
print(result) | |