tlkh commited on
Commit
0c4f0e2
·
1 Parent(s): c1a06e1

Update app

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -23,14 +23,16 @@ with st.sidebar.expander("⚙️ Dataset Options", expanded=False):
23
  st.markdown("This allows you to switch between the MRPC train and test sets, as well as choose to display only the original paraphrase pairs (MRPC) and/or the corrected pairs (MRPC-R1).")
24
  split = st.radio("Dataset Split", ["train", "test"])
25
  display = st.radio("Display only pairs from", [
26
- "All", "Only MRPC", "Only MRPC-R1"])
27
 
28
- ptype = st.sidebar.radio("Display Types", ["All",
29
- "Only Paraphrases (MRPC-R1)",
30
- "Only Paraphrases (MRPC)",
31
  "Rejected Paraphrases from MRPC",
32
  "Corrected Paraphrases from MRPC"])
33
 
 
 
 
34
  st.sidebar.markdown("**WPD/LD Score Filter Options**")
35
  display_range_wpd = st.sidebar.slider(
36
  "Filter by WPD Scores", min_value=0.0, max_value=1.0, value=(0.1, 0.7))
@@ -49,7 +51,7 @@ with st.sidebar.expander("📍 WPD/LD Score Explanation", expanded=False):
49
  When LD is set to a high range (>0.5), we can find many pairs labelled as paraphrases in MRPC are not in fact paraphrases.
50
  """)
51
 
52
- st.markdown("**Additional Options**")
53
 
54
  filter_by = st.radio(
55
  "Filter By Scores From", ["MRPC", "MRPC-R1"])
@@ -73,10 +75,10 @@ def filter_df(df, display, ptype, filter_by, display_scores):
73
  elif display == "Only MRPC-R1":
74
  df = df.drop(["og_s1", "og_s2"], axis=1)
75
  # filter paraphrase type
76
- if ptype == "Only Paraphrases (MRPC)":
77
  condition = df.og_label == 1
78
  df_sel = df[condition]
79
- elif ptype == "Only Paraphrases (MRPC-R1)":
80
  condition = df.new_label == 1
81
  df_sel = df[condition]
82
  elif ptype == "Rejected Paraphrases from MRPC":
@@ -117,10 +119,13 @@ def filter_df(df, display, ptype, filter_by, display_scores):
117
  if not display_scores:
118
  df_sel.drop(["og_ld", "og_wpd", "new_ld", "new_wpd"],
119
  axis=1, inplace=True)
 
 
 
120
  label_col = df_sel["og_label"].astype(
121
  str)+"->"+df_sel["new_label"].astype(str)
122
  df_sel["og/new label"] = label_col
123
- df_sel.drop(["remarks", "og_label", "new_label"], axis=1, inplace=True)
124
  return df_sel
125
 
126
 
 
23
  st.markdown("This allows you to switch between the MRPC train and test sets, as well as choose to display only the original paraphrase pairs (MRPC) and/or the corrected pairs (MRPC-R1).")
24
  split = st.radio("Dataset Split", ["train", "test"])
25
  display = st.radio("Display only pairs from", [
26
+ "Both MRPC and MRPC-R1", "Only MRPC", "Only MRPC-R1"])
27
 
28
+ ptype = st.sidebar.radio("Display Types", ["All Paraphrases",
29
+ "Only Paraphrases in MRPC-R1",
 
30
  "Rejected Paraphrases from MRPC",
31
  "Corrected Paraphrases from MRPC"])
32
 
33
+ display_reason = st.sidebar.checkbox(
34
+ "Display reason for label change", value=False)
35
+
36
  st.sidebar.markdown("**WPD/LD Score Filter Options**")
37
  display_range_wpd = st.sidebar.slider(
38
  "Filter by WPD Scores", min_value=0.0, max_value=1.0, value=(0.1, 0.7))
 
51
  When LD is set to a high range (>0.5), we can find many pairs labelled as paraphrases in MRPC are not in fact paraphrases.
52
  """)
53
 
54
+ st.markdown("**Additional Filter Options**")
55
 
56
  filter_by = st.radio(
57
  "Filter By Scores From", ["MRPC", "MRPC-R1"])
 
75
  elif display == "Only MRPC-R1":
76
  df = df.drop(["og_s1", "og_s2"], axis=1)
77
  # filter paraphrase type
78
+ if ptype == "All Paraphrases":
79
  condition = df.og_label == 1
80
  df_sel = df[condition]
81
+ elif ptype == "Only Paraphrases in MRPC-R1":
82
  condition = df.new_label == 1
83
  df_sel = df[condition]
84
  elif ptype == "Rejected Paraphrases from MRPC":
 
119
  if not display_scores:
120
  df_sel.drop(["og_ld", "og_wpd", "new_ld", "new_wpd"],
121
  axis=1, inplace=True)
122
+ if not display_reason:
123
+ df_sel.drop(["remarks", ],
124
+ axis=1, inplace=True)
125
  label_col = df_sel["og_label"].astype(
126
  str)+"->"+df_sel["new_label"].astype(str)
127
  df_sel["og/new label"] = label_col
128
+ df_sel.drop(["og_label", "new_label"], axis=1, inplace=True)
129
  return df_sel
130
 
131