tlkh commited on
Commit
5dd7df8
·
1 Parent(s): 5a6cb05

Update app

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -3,16 +3,20 @@ import pandas as pd
3
 
4
  st.set_page_config(layout="wide")
5
 
6
- with st.sidebar.expander("Explanation", expanded=False):
7
- st.markdown("""This demo allows you to explore the data inside [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398),
8
- showing how we can use Word Position Deviation (WPD) and Lexical Deviation (LD) to find different types of paraphrases.
9
- By using what we observe from the data, we can also correct numerous labelling errors inside MRPC, presenting the a revision of MRPC termed as MRPC-R1.
10
- You can see the rejected and corrected paraphrases by changing the **Display Types** option below.
11
- This demo accompanies the paper ["Towards Better Characterization of Paraphrases" (ACL 2022)](https://github.com/tlkh/paraphrase-metrics).""")
12
 
13
- with st.sidebar.expander("Dataset Options", expanded=False):
 
 
 
 
 
 
14
  split = st.selectbox("Dataset Split", ["train", "test"])
15
- display = st.selectbox("Source", ["All", "Only MRPC", "Only MRPC-R1"])
16
 
17
  ptype = st.sidebar.radio("Display Types", ["All",
18
  "Only Paraphrases (MRPC-R1)",
@@ -39,9 +43,9 @@ def load_df(split):
39
 
40
  def filter_df(df, display, ptype, filter_by, display_scores):
41
  # filter data
42
- if display == "MRPC":
43
  df = df.drop(["new_s1", "new_s2"], axis=1)
44
- elif display == "MRPC-R1":
45
  df = df.drop(["og_s1", "og_s2"], axis=1)
46
  # filter paraphrase type
47
  if ptype == "Only Paraphrases (MRPC)":
 
3
 
4
  st.set_page_config(layout="wide")
5
 
6
+ with st.sidebar.expander("📍 Explanation", expanded=False):
7
+ st.markdown("""
8
+ This demo allows you to explore the data inside the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) dataset.
9
+ It illustrates how **Word Position Deviation (WPD)** and **Lexical Deviation (LD)** can be used to find different types of [paraphrase pairs](https://direct.mit.edu/coli/article/39/3/463/1434/What-Is-a-Paraphrase) inside MRPC.
 
 
10
 
11
+ By using what we observe from the data, we can also correct numerous labelling errors inside MRPC, presenting the a revision of MRPC termed as **MRPC-R1**.
12
+ By changing the **Display Types** option below, you can filter the displayed pairs to show pairs that were rejected (label changed from paraphrase to non-paraphrase) or corrected (inconsistencies corrected).
13
+
14
+ This demo accompanies the paper ["Towards Better Characterization of Paraphrases" (ACL 2022)](https://github.com/tlkh/paraphrase-metrics), which describes in detail the methodologies used.""")
15
+
16
+ with st.sidebar.expander("⚙️ Dataset Options", expanded=False):
17
+ st.markdown("This allows you to switch between the MRPC train and test sets, as well as choose to display only the original paraphrase pairs (MRPC) and/or the corrected pairs (MRPC-R1).")
18
  split = st.selectbox("Dataset Split", ["train", "test"])
19
+ display = st.selectbox("Display only pairs from", ["All", "Only MRPC", "Only MRPC-R1"])
20
 
21
  ptype = st.sidebar.radio("Display Types", ["All",
22
  "Only Paraphrases (MRPC-R1)",
 
43
 
44
  def filter_df(df, display, ptype, filter_by, display_scores):
45
  # filter data
46
+ if display == "Only MRPC":
47
  df = df.drop(["new_s1", "new_s2"], axis=1)
48
+ elif display == "Only MRPC-R1":
49
  df = df.drop(["og_s1", "og_s2"], axis=1)
50
  # filter paraphrase type
51
  if ptype == "Only Paraphrases (MRPC)":