Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import pandas as pd | |
| from test_data import test_data | |
| from typing import List, Dict, Optional, Union | |
| class PatternLogic: | |
| def __init__(self): | |
| self.patterns = { | |
| 'channel': {'min_points': 4, 'confidence_threshold': 0.7}, | |
| 'triangle': {'min_points': 3, 'confidence_threshold': 0.75}, | |
| 'support': {'min_touches': 2, 'confidence_threshold': 0.8}, | |
| 'resistance': {'min_touches': 2, 'confidence_threshold': 0.8}, | |
| 'double_top': {'max_deviation': 0.02, 'confidence_threshold': 0.85}, | |
| 'double_bottom': {'max_deviation': 0.02, 'confidence_threshold': 0.85} | |
| } | |
| self.test_data = test_data | |
| def detect_channels(self, data: pd.DataFrame) -> Dict[str, Union[str, List[List[float]], float]]: | |
| days = len(data) | |
| base_price = 100 | |
| price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
| base_prices = base_price * (1 + price_changes) | |
| high_prices = base_prices * (1 + np.random.normal(0.01, 0.008, days)) | |
| low_prices = base_prices * (1 + np.random.normal(-0.01, 0.008, days)) | |
| timestamps = np.arange(days) | |
| upper_channel: List[List[float]] = [] | |
| lower_channel: List[List[float]] = [] | |
| for i in range(days): | |
| upper_channel.append([float(timestamps[i]), float(high_prices[i])]) | |
| lower_channel.append([float(timestamps[i]), float(low_prices[i])]) | |
| return { | |
| 'type': 'channel', | |
| 'upper': upper_channel, | |
| 'lower': lower_channel, | |
| 'confidence': 0.85 | |
| } | |
| def find_support_resistance(self, data: pd.DataFrame) -> List[Dict[str, Union[str, List[List[float]], float]]]: | |
| days = len(data) | |
| base_price = 100 | |
| price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
| close_prices = base_price * (1 + price_changes) * (1 + np.random.normal(0, 0.005, days)) | |
| timestamps = np.arange(days) | |
| levels: List[Dict] = [] | |
| for i in range(1, days-1): | |
| current_price = float(close_prices[i]) | |
| prev_price = float(close_prices[i-1]) | |
| next_price = float(close_prices[i+1]) | |
| if current_price > prev_price and current_price > next_price: | |
| levels.append({ | |
| 'type': 'resistance', | |
| 'coordinates': [[float(timestamps[i]), current_price]], | |
| 'confidence': 0.8 | |
| }) | |
| if current_price < prev_price and current_price < next_price: | |
| levels.append({ | |
| 'type': 'support', | |
| 'coordinates': [[float(timestamps[i]), current_price]], | |
| 'confidence': 0.8 | |
| }) | |
| return levels | |
| def detect_triangles(self, data: pd.DataFrame) -> Optional[Dict[str, Union[str, List[List[float]], float]]]: | |
| days = len(data) | |
| base_price = 100 | |
| price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
| base_prices = base_price * (1 + price_changes) | |
| high_prices = base_prices * (1 + np.random.normal(0.01, 0.008, days)) | |
| low_prices = base_prices * (1 + np.random.normal(-0.01, 0.008, days)) | |
| timestamps = np.arange(days) | |
| first_high = float(high_prices[0]) | |
| last_high = float(high_prices[-1]) | |
| first_low = float(low_prices[0]) | |
| last_low = float(low_prices[-1]) | |
| if last_high < first_high and last_low > first_low: | |
| return { | |
| 'type': 'triangle', | |
| 'coordinates': [ | |
| [float(timestamps[0]), first_high], | |
| [float(timestamps[-1]), last_high], | |
| [float(timestamps[0]), first_low], | |
| [float(timestamps[-1]), last_low] | |
| ], | |
| 'confidence': 0.75 | |
| } | |
| return None | |
| def validate_patterns(self, patterns: List[Dict]) -> List[Dict]: | |
| validated = [] | |
| for pattern in patterns: | |
| if pattern.get('confidence', 0) >= 0.8: | |
| validated.append(pattern) | |
| return validated | |