Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import pandas as pd | |
| from pattern_analyzer import PatternAnalyzer | |
| # Generate 150 days of realistic OHLCV data | |
| np.random.seed(42) # For reproducibility | |
| days = 150 | |
| base_price = 100 | |
| # Create price movements with trends and volatility | |
| price_changes = np.random.normal(0.001, 0.02, days).cumsum() | |
| prices = base_price * (1 + price_changes) | |
| test_data = { | |
| 'open': prices * (1 + np.random.normal(0, 0.005, days)), | |
| 'high': prices * (1 + np.random.normal(0.01, 0.008, days)), | |
| 'low': prices * (1 + np.random.normal(-0.01, 0.008, days)), | |
| 'close': prices * (1 + np.random.normal(0, 0.005, days)), | |
| 'volume': np.random.normal(1000000, 200000, days) | |
| } | |
| # Convert to pandas DataFrame for better handling | |
| df = pd.DataFrame(test_data) | |
| # Ensure high is highest and low is lowest for each day | |
| df['high'] = df[['open', 'high', 'close']].max(axis=1) | |
| df['low'] = df[['open', 'low', 'close']].min(axis=1) | |
| # Test pattern detection | |
| analyzer = PatternAnalyzer() | |
| patterns = analyzer.analyze_data(df) | |
| print("Detected Patterns:", patterns) | |