tnt2011 commited on
Commit
9b62bc6
·
1 Parent(s): 63f0f34

update script

Browse files
Files changed (1) hide show
  1. app.py +1 -56
app.py CHANGED
@@ -7,60 +7,11 @@ __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat'
7
  from fastai.vision.all import *
8
  import gradio as gr
9
 
10
- def is_cat(x):
11
- return x[0].isupper()
12
-
13
- # %% dog_v_cat.ipynb 2
14
- from fastai.vision.all import *
15
- import gradio as gr
16
-
17
- def is_cat(x):
18
- return x[0].isupper()
19
-
20
- # %% dog_v_cat.ipynb 4
21
- from fastai.vision.all import *
22
- import gradio as gr
23
-
24
- def is_cat(x):
25
- return x[0].isupper()
26
-
27
- # %% dog_v_cat.ipynb 6
28
- from fastai.vision.all import *
29
- import gradio as gr
30
-
31
- def is_cat(x):
32
- return x[0].isupper()
33
-
34
- # %% dog_v_cat.ipynb 7
35
- from fastai.vision.all import *
36
- import gradio as gr
37
-
38
- def is_cat(x):
39
- return x[0].isupper()
40
-
41
- # %% dog_v_cat.ipynb 8
42
- from fastai.vision.all import *
43
- import gradio as gr
44
-
45
- def is_cat(x):
46
- return x[0].isupper()
47
-
48
- # %% dog_v_cat.ipynb 9
49
- from fastai.vision.all import *
50
- import gradio as gr
51
-
52
- def is_cat(x):
53
- return x[0].isupper()
54
-
55
- # %% dog_v_cat.ipynb 10
56
- from fastai.vision.all import *
57
- import gradio as gr
58
-
59
  def is_cat(x):
60
  return x[0].isupper()
61
 
62
  # %% dog_v_cat.ipynb 12
63
- learn = load_learner('/kaggle/input/models/model.pkl')
64
 
65
  # %% dog_v_cat.ipynb 14
66
  categories = ('Dog', 'Cat')
@@ -68,12 +19,6 @@ def classify_image(img):
68
  pred, idx, probs = learn.predict(img)
69
  return dict(zip(categories, map(float, probs)))
70
 
71
- # %% dog_v_cat.ipynb 16
72
- image = gr.inputs.Image(shape=(192,192))
73
- label = gr.outputs.Label()
74
- examples = ['/kaggle/input/dog-or-cat-test/dog.jpg','/kaggle/input/dog-or-cat-test/cat.jpg', '/kaggle/input/dog-or-cat-test/challenge.jpg']
75
-
76
- intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
77
 
78
  # %% dog_v_cat.ipynb 17
79
  image = gr.inputs.Image(shape=(192,192))
 
7
  from fastai.vision.all import *
8
  import gradio as gr
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  def is_cat(x):
11
  return x[0].isupper()
12
 
13
  # %% dog_v_cat.ipynb 12
14
+ learn = load_learner('model.pkl')
15
 
16
  # %% dog_v_cat.ipynb 14
17
  categories = ('Dog', 'Cat')
 
19
  pred, idx, probs = learn.predict(img)
20
  return dict(zip(categories, map(float, probs)))
21
 
 
 
 
 
 
 
22
 
23
  # %% dog_v_cat.ipynb 17
24
  image = gr.inputs.Image(shape=(192,192))