Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +227 -0
- packages.txt +1 -0
- requirements.txt +9 -0
- s3_uploads.py +27 -0
app.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import subprocess
|
6 |
+
import tempfile
|
7 |
+
import base64
|
8 |
+
from pathlib import Path
|
9 |
+
import fitz
|
10 |
+
import gradio as gr
|
11 |
+
import time
|
12 |
+
import html
|
13 |
+
from openai import OpenAI
|
14 |
+
from s3_uploads import upload_to_s3
|
15 |
+
from environs import env
|
16 |
+
|
17 |
+
|
18 |
+
stop_generation = False
|
19 |
+
|
20 |
+
def stream_from_vllm(messages):
|
21 |
+
global stop_generation
|
22 |
+
client = OpenAI(
|
23 |
+
base_url="https://router.huggingface.co/v1",
|
24 |
+
api_key=env.str("HF_API_KEY"),
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
response = client.chat.completions.create(
|
29 |
+
model="THUDM/GLM-4.1V-9B-Thinking:novita",
|
30 |
+
messages=messages,
|
31 |
+
temperature=0.01,
|
32 |
+
stream=True,
|
33 |
+
max_tokens=8000
|
34 |
+
)
|
35 |
+
|
36 |
+
for chunk in response:
|
37 |
+
if stop_generation:
|
38 |
+
break
|
39 |
+
|
40 |
+
if chunk.choices and chunk.choices[0].delta:
|
41 |
+
delta = chunk.choices[0].delta
|
42 |
+
yield delta
|
43 |
+
|
44 |
+
|
45 |
+
class GLM4VModel:
|
46 |
+
def _strip_html(self, text: str) -> str:
|
47 |
+
return re.sub(r"<[^>]+>", "", text).strip()
|
48 |
+
|
49 |
+
def _wrap_text(self, text: str):
|
50 |
+
return [{"type": "text", "text": text}]
|
51 |
+
|
52 |
+
def _image_to_base64(self, image_path):
|
53 |
+
with open(image_path, "rb") as image_file:
|
54 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
55 |
+
ext = Path(image_path).suffix.lower()
|
56 |
+
if ext in ['.jpg', '.jpeg']:
|
57 |
+
mime_type = 'image/jpeg'
|
58 |
+
elif ext == '.png':
|
59 |
+
mime_type = 'image/png'
|
60 |
+
elif ext == '.gif':
|
61 |
+
mime_type = 'image/gif'
|
62 |
+
elif ext == '.bmp':
|
63 |
+
mime_type = 'image/bmp'
|
64 |
+
elif ext in ['.tiff', '.tif']:
|
65 |
+
mime_type = 'image/tiff'
|
66 |
+
elif ext == '.webp':
|
67 |
+
mime_type = 'image/webp'
|
68 |
+
else:
|
69 |
+
mime_type = 'image/jpeg'
|
70 |
+
|
71 |
+
return f"data:{mime_type};base64,{encoded_string}"
|
72 |
+
|
73 |
+
def _pdf_to_imgs(self, pdf_path):
|
74 |
+
doc = fitz.open(pdf_path)
|
75 |
+
imgs = []
|
76 |
+
for i in range(doc.page_count):
|
77 |
+
pix = doc.load_page(i).get_pixmap(dpi=180)
|
78 |
+
img_p = os.path.join(tempfile.gettempdir(), f"{Path(pdf_path).stem}_{i}.png")
|
79 |
+
pix.save(img_p)
|
80 |
+
imgs.append(img_p)
|
81 |
+
doc.close()
|
82 |
+
return imgs
|
83 |
+
|
84 |
+
def _ppt_to_imgs(self, ppt_path):
|
85 |
+
tmp = tempfile.mkdtemp()
|
86 |
+
subprocess.run(
|
87 |
+
["libreoffice", "--headless", "--convert-to", "pdf", "--outdir", tmp, ppt_path],
|
88 |
+
check=True,
|
89 |
+
)
|
90 |
+
pdf_path = os.path.join(tmp, Path(ppt_path).stem + ".pdf")
|
91 |
+
return self._pdf_to_imgs(pdf_path)
|
92 |
+
|
93 |
+
def _files_to_content(self, media):
|
94 |
+
out = []
|
95 |
+
for f in media or []:
|
96 |
+
ext = Path(f).suffix.lower()
|
97 |
+
if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
|
98 |
+
out.append({"type": "video_url", "video_url": {"url": upload_to_s3(f)}})
|
99 |
+
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
|
100 |
+
out.append({"type": "image_url", "image_url": {"url": upload_to_s3(f)}})
|
101 |
+
elif ext in [".ppt", ".pptx"]:
|
102 |
+
for p in self._ppt_to_imgs(f):
|
103 |
+
out.append({"type": "image_url", "image_url": {"url": upload_to_s3(p)}})
|
104 |
+
elif ext == ".pdf":
|
105 |
+
for p in self._pdf_to_imgs(f):
|
106 |
+
out.append({"type": "image_url", "image_url": {"url": upload_to_s3(p)}})
|
107 |
+
return out
|
108 |
+
|
109 |
+
def _stream_fragment(self, reasoning_content: str = "", content: str = "", skip_think: bool = True):
|
110 |
+
think_html = ""
|
111 |
+
answer_md = ""
|
112 |
+
|
113 |
+
if reasoning_content and not skip_think:
|
114 |
+
reasoning_content_clean = reasoning_content.strip()
|
115 |
+
think_html = (
|
116 |
+
"### 💭 Thinking\n"
|
117 |
+
"<details open>\n"
|
118 |
+
"<summary>Click to expand</summary>\n\n"
|
119 |
+
f"{reasoning_content_clean}\n"
|
120 |
+
"</details>\n"
|
121 |
+
)
|
122 |
+
|
123 |
+
if content:
|
124 |
+
answer_md = content.strip()
|
125 |
+
|
126 |
+
return think_html + "\n\n" + answer_md
|
127 |
+
|
128 |
+
|
129 |
+
def _build_messages(self, raw_hist, sys_prompt):
|
130 |
+
msgs = []
|
131 |
+
if sys_prompt.strip():
|
132 |
+
msgs.append({"role": "system", "content": [{"type": "text", "text": sys_prompt.strip()}]})
|
133 |
+
for h in raw_hist:
|
134 |
+
if h["role"] == "user":
|
135 |
+
msgs.append({"role": "user", "content": h["content"]})
|
136 |
+
else:
|
137 |
+
raw = re.sub(r"<details.*?</details>", "", h["content"], flags=re.DOTALL)
|
138 |
+
clean_content = self._strip_html(raw).strip()
|
139 |
+
if clean_content:
|
140 |
+
msgs.append({"role": "assistant", "content": self._wrap_text(clean_content)})
|
141 |
+
return msgs
|
142 |
+
|
143 |
+
def stream_generate(self, raw_hist, sys_prompt: str, *, skip_special_tokens: bool = False):
|
144 |
+
global stop_generation
|
145 |
+
stop_generation = False
|
146 |
+
msgs = self._build_messages(raw_hist, sys_prompt)
|
147 |
+
reasoning_buffer = ""
|
148 |
+
content_buffer = ""
|
149 |
+
|
150 |
+
try:
|
151 |
+
for delta in stream_from_vllm(msgs):
|
152 |
+
if stop_generation:
|
153 |
+
break
|
154 |
+
if hasattr(delta, 'reasoning_content') and delta.reasoning_content:
|
155 |
+
reasoning_buffer += delta.reasoning_content
|
156 |
+
elif hasattr(delta, 'content') and delta.content:
|
157 |
+
content_buffer += delta.content
|
158 |
+
else:
|
159 |
+
if isinstance(delta, dict):
|
160 |
+
if 'reasoning_content' in delta and delta['reasoning_content']:
|
161 |
+
reasoning_buffer += delta['reasoning_content']
|
162 |
+
if 'content' in delta and delta['content']:
|
163 |
+
content_buffer += delta['content']
|
164 |
+
elif hasattr(delta, 'content') and delta.content:
|
165 |
+
content_buffer += delta.content
|
166 |
+
|
167 |
+
yield self._stream_fragment(reasoning_buffer, content_buffer)
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
error_msg = f"Error during streaming: {str(e)}"
|
171 |
+
yield self._stream_fragment("", error_msg)
|
172 |
+
|
173 |
+
|
174 |
+
glm4v = GLM4VModel()
|
175 |
+
|
176 |
+
sys_prompt = """Instructions:
|
177 |
+
Extract only "BILL OF METERIAL" table containing columns same as it is!
|
178 |
+
colums: (POSITION, DESCRIPTION, N PIECES, MATERIAL (like SA 516 Gr.70N or SA 105 N), DIMENSIONS(like 1700 I.D. X 2045H 50 THK.), WT.Kgs
|
179 |
+
|
180 |
+
Ignore title blocks, revision notes, drawing numbers, and general annotations outside the "BILL OF METERIAL".
|
181 |
+
If a page contains multiple tables, extract only those explicitly related to BILL OF METERIAL.
|
182 |
+
|
183 |
+
Preserve the row and column structure as files.
|
184 |
+
Do not include any surrounding decorative lines or borders—only clean tabular data.
|
185 |
+
output format: markdown table format with following columns (POSITION, DESCRIPTION, N PIECES, MATERIAL, DIMENSIONS(like 1700 I.D. X 2045H 50 THK.) and WT.Kgs)"""
|
186 |
+
|
187 |
+
def extract_table_from_file(file):
|
188 |
+
if file is None:
|
189 |
+
return "Please upload a file."
|
190 |
+
|
191 |
+
payload = glm4v._files_to_content([file.name])
|
192 |
+
raw_hist = [{"role": "user", "content": payload}]
|
193 |
+
|
194 |
+
full_response = ""
|
195 |
+
yield "<h2>🌀 Processing...</h2>\n"
|
196 |
+
try:
|
197 |
+
for chunk in glm4v.stream_generate(raw_hist, sys_prompt):
|
198 |
+
full_response = chunk
|
199 |
+
yield full_response
|
200 |
+
except Exception as e:
|
201 |
+
yield f"<div style='color: red;'>Error: {html.escape(str(e))}</div>"
|
202 |
+
|
203 |
+
theme = gr.themes.Ocean(
|
204 |
+
primary_hue="gray",
|
205 |
+
)
|
206 |
+
|
207 |
+
with gr.Blocks(title="demo", theme=theme) as demo:
|
208 |
+
gr.Markdown(
|
209 |
+
"<div style='text-align:center; margin-bottom:20px;'><h1> PDF Extraction Demo</h1></div"
|
210 |
+
)
|
211 |
+
with gr.Row():
|
212 |
+
with gr.Column():
|
213 |
+
up = gr.File(label="Upload File", type="filepath")
|
214 |
+
format_selector = gr.Radio(choices=["CSV", "JSON"], label="Output Format", value="CSV")
|
215 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
216 |
+
with gr.Column():
|
217 |
+
output_markdown = gr.Markdown(label="Extracted Table")
|
218 |
+
|
219 |
+
submit_btn.click(
|
220 |
+
extract_table_from_file,
|
221 |
+
inputs=[up],
|
222 |
+
outputs=[output_markdown],
|
223 |
+
|
224 |
+
)
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
libreoffice
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.25.0
|
2 |
+
spaces>=0.37.1
|
3 |
+
PyMuPDF>=1.26.1
|
4 |
+
torchvision==0.20.1
|
5 |
+
torch==2.5.1
|
6 |
+
av>=14.4.0
|
7 |
+
openai
|
8 |
+
boto3
|
9 |
+
environs
|
s3_uploads.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import boto3
|
2 |
+
import uuid
|
3 |
+
from environs import env
|
4 |
+
|
5 |
+
AWS_SECRET_KEY=env.str("AWS_SECRET_KEY")
|
6 |
+
AWS_ACCESS_KEY=env.str("AWS_ACCESS_KEY")
|
7 |
+
BUCKET_NAME = env.str("BUCKET_NAME")
|
8 |
+
AWS_REGION = env.str("AWS_REGION")
|
9 |
+
|
10 |
+
AWS_USER=env.str("AWS_USER", default="default_user")
|
11 |
+
s3 = boto3.client(
|
12 |
+
's3',
|
13 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
14 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
15 |
+
region_name=AWS_REGION
|
16 |
+
)
|
17 |
+
|
18 |
+
def upload_to_s3(file_path):
|
19 |
+
_file_path = file_path.split("/")[-1]
|
20 |
+
_file_path = _file_path.split(".")
|
21 |
+
_file_path[-2] = _file_path[-2]+"_" + str(uuid.uuid4())
|
22 |
+
|
23 |
+
s3_key = ".".join(_file_path)
|
24 |
+
s3.upload_file(file_path, BUCKET_NAME, s3_key)
|
25 |
+
file_path = f"https://{BUCKET_NAME}.s3.{AWS_REGION}.amazonaws.com/{s3_key}"
|
26 |
+
|
27 |
+
return file_path
|