Upload 6 files
Browse files- app.py +134 -0
- chroma_db/.DS_Store +0 -0
- chroma_db/chroma.sqlite3 +0 -0
- pages/chatbot.py +49 -0
- pages/management.py +68 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__import__('pysqlite3')
|
2 |
+
import sys
|
3 |
+
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
+
|
5 |
+
# DATABASES = {
|
6 |
+
# 'default': {
|
7 |
+
# 'ENGINE': 'django.db.backends.sqlite3',
|
8 |
+
# 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
|
9 |
+
# }
|
10 |
+
# }
|
11 |
+
import streamlit as st
|
12 |
+
from huggingface_hub import InferenceClient
|
13 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate
|
14 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
15 |
+
from llama_index.core import StorageContext
|
16 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
17 |
+
from langchain.text_splitter import CharacterTextSplitter
|
18 |
+
from langchain.vectorstores import Chroma
|
19 |
+
import chromadb
|
20 |
+
from langchain.memory import ConversationBufferMemory
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
# Set page config
|
25 |
+
st.set_page_config(page_title="RAG Chatbot", page_icon="🤖", layout="wide")
|
26 |
+
|
27 |
+
# Set your Hugging Face token here
|
28 |
+
|
29 |
+
HF_TOKEN = st.secrets["HF_TOKEN"]
|
30 |
+
|
31 |
+
# Initialize your models, databases, and other components here
|
32 |
+
@st.cache_resource
|
33 |
+
def init_chroma():
|
34 |
+
persist_directory = "chroma_db"
|
35 |
+
chroma_client = chromadb.PersistentClient(path=persist_directory)
|
36 |
+
chroma_collection = chroma_client.get_or_create_collection("my_collection")
|
37 |
+
return chroma_client, chroma_collection
|
38 |
+
|
39 |
+
@st.cache_resource
|
40 |
+
def init_vectorstore():
|
41 |
+
persist_directory = "chroma_db"
|
42 |
+
embeddings = HuggingFaceEmbeddings()
|
43 |
+
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings, collection_name="my_collection")
|
44 |
+
return vectorstore
|
45 |
+
|
46 |
+
# Initialize components
|
47 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3", token=HF_TOKEN)
|
48 |
+
chroma_client, chroma_collection = init_chroma()
|
49 |
+
vectorstore = init_vectorstore()
|
50 |
+
|
51 |
+
# Initialize memory buffer
|
52 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
53 |
+
|
54 |
+
def rag_query(query):
|
55 |
+
# Retrieve relevant documents using similarity search
|
56 |
+
retrieved_docs = vectorstore.similarity_search(query, k=3)
|
57 |
+
|
58 |
+
# Prepare context for LLaMA
|
59 |
+
if retrieved_docs:
|
60 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
61 |
+
else:
|
62 |
+
context = ""
|
63 |
+
|
64 |
+
# Append new interaction to memory
|
65 |
+
memory.chat_memory.add_user_message(query)
|
66 |
+
|
67 |
+
# Retrieve past interactions for context
|
68 |
+
past_interactions = memory.load_memory_variables({})[memory.memory_key]
|
69 |
+
context_with_memory = f"{context}\n\nConversation History:\n{past_interactions}"
|
70 |
+
|
71 |
+
# Debugging: Display context and past interactions
|
72 |
+
# st.write("Debugging Info:")
|
73 |
+
# st.write("Context Sent to Model:", context_with_memory)
|
74 |
+
# st.write("Retrieved Documents:", [doc.page_content for doc in retrieved_docs])
|
75 |
+
# st.write("Past Interactions:", past_interactions)
|
76 |
+
|
77 |
+
# Generate response using LLaMA
|
78 |
+
messages = [
|
79 |
+
{"role": "user", "content": f"Context: {context_with_memory}\n\nQuestion: {query},it is not mandatory to use the context\n\nAnswer:"}
|
80 |
+
]
|
81 |
+
|
82 |
+
# Get the response from the client
|
83 |
+
response_content = client.chat_completion(messages=messages, max_tokens=500, stream=False)
|
84 |
+
|
85 |
+
# Process the response content
|
86 |
+
response = response_content.choices[0].message.content.split("Answer:")[-1].strip()
|
87 |
+
|
88 |
+
# If the response is empty or very short, or if no relevant documents were found, use the LLM's default knowledge
|
89 |
+
if not context or len(response.split()) < 35 or not retrieved_docs:
|
90 |
+
messages = [{"role": "user", "content": query}]
|
91 |
+
response_content = client.chat_completion(messages=messages, max_tokens=500, stream=False)
|
92 |
+
response = response_content.choices[0].message.content
|
93 |
+
|
94 |
+
# Append the response to memory
|
95 |
+
memory.chat_memory.add_ai_message(response)
|
96 |
+
|
97 |
+
return response
|
98 |
+
|
99 |
+
def process_feedback(query, response, feedback):
|
100 |
+
# st.write(f"Feedback received: {'👍' if feedback else '👎'} for query: {query}")
|
101 |
+
if feedback:
|
102 |
+
# If thumbs up, store the response in memory buffer
|
103 |
+
memory.chat_memory.add_ai_message(response)
|
104 |
+
else:
|
105 |
+
# If thumbs down, remove the response from memory buffer and regenerate the response
|
106 |
+
# memory.chat_memory.messages = [msg for msg in memory.chat_memory.messages if msg.get("content") != response]
|
107 |
+
new_query=f"{query}. Give better response"
|
108 |
+
new_response = rag_query(new_query)
|
109 |
+
st.markdown(new_response)
|
110 |
+
memory.chat_memory.add_ai_message(new_response)
|
111 |
+
|
112 |
+
# Streamlit interface
|
113 |
+
|
114 |
+
st.title("Welcome to our RAG-Based Chatbot")
|
115 |
+
st.markdown("***")
|
116 |
+
st.info('''
|
117 |
+
To use Our Mistral supported Chatbot, click Chat.
|
118 |
+
|
119 |
+
To push data, click on Store Document.
|
120 |
+
''')
|
121 |
+
|
122 |
+
col1, col2 = st.columns(2)
|
123 |
+
|
124 |
+
with col1:
|
125 |
+
chat = st.button("Chat")
|
126 |
+
if chat:
|
127 |
+
st.switch_page("pages/chatbot.py")
|
128 |
+
|
129 |
+
with col2:
|
130 |
+
rag = st.button("Store Document")
|
131 |
+
if rag:
|
132 |
+
st.switch_page("pages/management.py")
|
133 |
+
|
134 |
+
st.markdown("<div style='text-align:center;'></div>", unsafe_allow_html=True)
|
chroma_db/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
chroma_db/chroma.sqlite3
ADDED
Binary file (156 kB). View file
|
|
pages/chatbot.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from app import rag_query, process_feedback
|
3 |
+
|
4 |
+
|
5 |
+
st.title("RAG Chatbot")
|
6 |
+
|
7 |
+
# Initialize chat history
|
8 |
+
if "messages" not in st.session_state:
|
9 |
+
st.session_state.messages = []
|
10 |
+
|
11 |
+
# Display chat messages from history on app rerun
|
12 |
+
for i, message in enumerate(st.session_state.messages):
|
13 |
+
with st.chat_message(message["role"]):
|
14 |
+
st.markdown(message["content"])
|
15 |
+
if message["role"] == "assistant":
|
16 |
+
col1, col2 = st.columns([1,15])
|
17 |
+
with col1:
|
18 |
+
if st.button("👍", key=f"thumbs_up_{i}"):
|
19 |
+
process_feedback(st.session_state.messages[i-1]["content"], message["content"], True)
|
20 |
+
with col2:
|
21 |
+
if st.button("👎", key=f"thumbs_down_{i}"):
|
22 |
+
process_feedback(st.session_state.messages[i-1]["content"], message["content"], False)
|
23 |
+
# st.session_state.messages.pop() # Remove the last assistant message
|
24 |
+
#st.rerun() # Rerun the app to regenerate the response
|
25 |
+
|
26 |
+
# React to user input
|
27 |
+
if prompt := st.chat_input("What is your question?"):
|
28 |
+
# Display user message in chat message container
|
29 |
+
st.chat_message("user").markdown(prompt)
|
30 |
+
# Add user message to chat history
|
31 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
32 |
+
|
33 |
+
response = rag_query(prompt)
|
34 |
+
|
35 |
+
# Display assistant response in chat message container
|
36 |
+
with st.chat_message("assistant"):
|
37 |
+
st.markdown(response)
|
38 |
+
# Add assistant response to chat history
|
39 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
40 |
+
|
41 |
+
# Rerun the app to display the feedback buttons
|
42 |
+
st.experimental_rerun()
|
43 |
+
|
44 |
+
# Sidebar for additional controls
|
45 |
+
with st.sidebar:
|
46 |
+
st.header("Options")
|
47 |
+
if st.button("Clear Chat History"):
|
48 |
+
st.session_state.messages = []
|
49 |
+
st.experimental_rerun()
|
pages/management.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from langchain.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from app import vectorstore
|
6 |
+
|
7 |
+
|
8 |
+
st.title("Document Management")
|
9 |
+
|
10 |
+
# File uploader
|
11 |
+
uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx'])
|
12 |
+
|
13 |
+
if uploaded_file is not None:
|
14 |
+
# Create a temporary directory to store the uploaded file
|
15 |
+
temp_dir = "temp_uploads"
|
16 |
+
os.makedirs(temp_dir, exist_ok=True)
|
17 |
+
file_path = os.path.join(temp_dir, uploaded_file.name)
|
18 |
+
|
19 |
+
# Save the uploaded file temporarily
|
20 |
+
with open(file_path, "wb") as f:
|
21 |
+
f.write(uploaded_file.getbuffer())
|
22 |
+
|
23 |
+
st.success(f"File {uploaded_file.name} successfully uploaded!")
|
24 |
+
|
25 |
+
# Process the uploaded file
|
26 |
+
if st.button("Process Document"):
|
27 |
+
with st.spinner("Processing document..."):
|
28 |
+
try:
|
29 |
+
# Load the document based on file type
|
30 |
+
if uploaded_file.type == "application/pdf":
|
31 |
+
loader = PyPDFLoader(file_path)
|
32 |
+
elif uploaded_file.type == "text/plain":
|
33 |
+
loader = TextLoader(file_path)
|
34 |
+
else:
|
35 |
+
st.error("Unsupported file type.")
|
36 |
+
st.stop()
|
37 |
+
|
38 |
+
documents = loader.load()
|
39 |
+
|
40 |
+
# Split the document into chunks
|
41 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
42 |
+
texts = text_splitter.split_documents(documents)
|
43 |
+
|
44 |
+
# Add the chunks to the vectorstore
|
45 |
+
vectorstore.add_documents(texts)
|
46 |
+
|
47 |
+
st.success(f"Document processed and added to the knowledge base!")
|
48 |
+
except Exception as e:
|
49 |
+
st.error(f"An error occurred: {e}")
|
50 |
+
|
51 |
+
# Clean up: remove the temporary file
|
52 |
+
os.remove(file_path)
|
53 |
+
|
54 |
+
# Display current documents in the knowledge base
|
55 |
+
# st.subheader("Current Documents in Knowledge Base")
|
56 |
+
# # This is a placeholder. You'll need to implement a method to retrieve and display
|
57 |
+
# # the list of documents currently in your Chroma database.
|
58 |
+
# st.write("Placeholder for document list")
|
59 |
+
|
60 |
+
# # Option to clear the entire knowledge base
|
61 |
+
# if st.button("Clear Knowledge Base"):
|
62 |
+
# if st.sidebar.checkbox("Are you sure you want to clear the entire knowledge base? This action cannot be undone."):
|
63 |
+
# try:
|
64 |
+
# # Clear the Chroma database
|
65 |
+
# vectorstore.delete()
|
66 |
+
# st.success("Knowledge base cleared!")
|
67 |
+
# except Exception as e:
|
68 |
+
# st.error(f"An error occurred: {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chromadb==0.5.5
|
2 |
+
huggingface_hub==0.23.4
|
3 |
+
langchain==0.2.12
|
4 |
+
llama_index==0.10.62
|
5 |
+
streamlit==1.36.0
|
6 |
+
streamlit_extras==0.4.6
|
7 |
+
llama-index-vector-stores-chroma==0.1.10
|
8 |
+
pysqlite3-binary
|
9 |
+
langchain-community==0.2.6
|
10 |
+
sentence-transformers
|