__import__('pysqlite3') import sys sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } import streamlit as st from huggingface_hub import InferenceClient from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma import chromadb from langchain.memory import ConversationBufferMemory # Set page config st.set_page_config(page_title="RAG Chatbot", page_icon="🤖", layout="wide") # Set your Hugging Face token here HF_TOKEN = st.secrets["HF_TOKEN"] # Initialize your models, databases, and other components here @st.cache_resource def init_chroma(): persist_directory = "chroma_db" chroma_client = chromadb.PersistentClient(path=persist_directory) chroma_collection = chroma_client.get_or_create_collection("my_collection") return chroma_client, chroma_collection @st.cache_resource def init_vectorstore(): persist_directory = "chroma_db" embeddings = HuggingFaceEmbeddings() vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings, collection_name="my_collection") return vectorstore # Initialize components client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3", token=HF_TOKEN) chroma_client, chroma_collection = init_chroma() vectorstore = init_vectorstore() # Initialize memory buffer memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def rag_query(query): # Retrieve relevant documents using similarity search retrieved_docs = vectorstore.similarity_search(query, k=3) # Prepare context for LLaMA if retrieved_docs: context = "\n".join([doc.page_content for doc in retrieved_docs]) else: context = "" # Append new interaction to memory memory.chat_memory.add_user_message(query) # Retrieve past interactions for context past_interactions = memory.load_memory_variables({})[memory.memory_key] context_with_memory = f"{context}\n\nConversation History:\n{past_interactions}" # Debugging: Display context and past interactions # st.write("Debugging Info:") # st.write("Context Sent to Model:", context_with_memory) # st.write("Retrieved Documents:", [doc.page_content for doc in retrieved_docs]) # st.write("Past Interactions:", past_interactions) # Generate response using LLaMA messages = [ {"role": "user", "content": f"Context: {context_with_memory}\n\nQuestion: {query},it is not mandatory to use the context\n\nAnswer:"} ] # Get the response from the client response_content = client.chat_completion(messages=messages, max_tokens=500, stream=False) # Process the response content response = response_content.choices[0].message.content.split("Answer:")[-1].strip() # If the response is empty or very short, or if no relevant documents were found, use the LLM's default knowledge if not context or len(response.split()) < 35 or not retrieved_docs: messages = [{"role": "user", "content": query}] response_content = client.chat_completion(messages=messages, max_tokens=500, stream=False) response = response_content.choices[0].message.content # Append the response to memory memory.chat_memory.add_ai_message(response) return response def process_feedback(query, response, feedback): # st.write(f"Feedback received: {'👍' if feedback else '👎'} for query: {query}") if feedback: # If thumbs up, store the response in memory buffer memory.chat_memory.add_ai_message(response) else: # If thumbs down, remove the response from memory buffer and regenerate the response # memory.chat_memory.messages = [msg for msg in memory.chat_memory.messages if msg.get("content") != response] new_query=f"{query}. Give better response" new_response = rag_query(new_query) st.markdown(new_response) memory.chat_memory.add_ai_message(new_response) # Streamlit interface st.title("Welcome to our RAG-Based Chatbot") st.markdown("***") st.info(''' To use Our Mistral supported Chatbot, click Chat. To push data, click on Store Document. ''') col1, col2 = st.columns(2) with col1: chat = st.button("Chat") if chat: st.switch_page("pages/chatbot.py") with col2: rag = st.button("Store Document") if rag: st.switch_page("pages/management.py") st.markdown("
", unsafe_allow_html=True)