Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- app.py +211 -0
- requirements.txt +11 -0
- utils/.DS_Store +0 -0
- utils/data_mapping.py +18 -0
- utils/postprocessing.py +12 -0
- utils/visualization.py +53 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
from PIL import Image
|
8 |
+
import logging
|
9 |
+
|
10 |
+
|
11 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
12 |
+
|
13 |
+
from models.segmentation_model import SegmentationModel
|
14 |
+
from models.identification_model import IdentificationModel
|
15 |
+
from models.text_extraction_model import TextExtractionModel
|
16 |
+
from models.summarization_model import SummarizationModel
|
17 |
+
from utils.postprocessing import save_segmented_objects
|
18 |
+
from utils.data_mapping import map_data, save_mapped_data
|
19 |
+
from utils.visualization import visualize_detections, visualize_segmentation, create_summary_table
|
20 |
+
|
21 |
+
# Set up logging
|
22 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def load_segmentation_model():
|
26 |
+
return SegmentationModel()
|
27 |
+
|
28 |
+
@st.cache_resource
|
29 |
+
def load_identification_model():
|
30 |
+
return IdentificationModel()
|
31 |
+
|
32 |
+
@st.cache_resource
|
33 |
+
def load_text_extraction_model():
|
34 |
+
return TextExtractionModel()
|
35 |
+
|
36 |
+
@st.cache_resource
|
37 |
+
def load_summarization_model():
|
38 |
+
return SummarizationModel()
|
39 |
+
|
40 |
+
def main():
|
41 |
+
st.set_page_config(layout="wide")
|
42 |
+
st.markdown("""
|
43 |
+
<style>
|
44 |
+
.stImage > div {
|
45 |
+
margin-left: auto;
|
46 |
+
margin-right: auto;
|
47 |
+
}
|
48 |
+
.stTable > div {
|
49 |
+
margin-left: auto;
|
50 |
+
margin-right: auto;
|
51 |
+
}
|
52 |
+
h1{ /* Title style */
|
53 |
+
text-align: center;
|
54 |
+
}
|
55 |
+
</style>
|
56 |
+
""", unsafe_allow_html=True)
|
57 |
+
|
58 |
+
def clear_segmented_objects_folder(folder_path):
|
59 |
+
# Remove all files in the segmented_objects folder
|
60 |
+
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
61 |
+
for filename in os.listdir(folder_path):
|
62 |
+
file_path = os.path.join(folder_path, filename)
|
63 |
+
try:
|
64 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
65 |
+
os.unlink(file_path) # Remove the file
|
66 |
+
elif os.path.isdir(file_path):
|
67 |
+
shutil.rmtree(file_path) # Remove the directory
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f'Failed to delete {file_path}. Reason: {e}')
|
70 |
+
else:
|
71 |
+
print(f"Folder '{folder_path}' does not exist, skipping the clearing step.")
|
72 |
+
|
73 |
+
clear_segmented_objects_folder("data/segmented_objects")
|
74 |
+
|
75 |
+
st.title("Image Processing Pipeline 🤖")
|
76 |
+
|
77 |
+
# File upload
|
78 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
79 |
+
logging.debug(f"Uploaded file: {uploaded_file}")
|
80 |
+
|
81 |
+
if uploaded_file is not None:
|
82 |
+
# Save uploaded file
|
83 |
+
input_path = os.path.join("data", "input_images", uploaded_file.name)
|
84 |
+
with open(input_path, "wb") as f:
|
85 |
+
f.write(uploaded_file.getbuffer())
|
86 |
+
logging.debug(f"File saved to: {input_path}")
|
87 |
+
|
88 |
+
image = Image.open(input_path)
|
89 |
+
|
90 |
+
# Segmentation
|
91 |
+
segmentation_model = load_segmentation_model()
|
92 |
+
masks, boxes, labels, class_name = segmentation_model.segment_image(input_path)
|
93 |
+
logging.debug(f"Segmentation results: {len(masks)} masks, {len(boxes)} boxes, {len(labels)} labels")
|
94 |
+
|
95 |
+
# Save segmented objects
|
96 |
+
objects = save_segmented_objects(image, masks, boxes, "data/segmented_objects")
|
97 |
+
logging.debug(f"Saved {len(objects)} segmented objects")
|
98 |
+
|
99 |
+
# Object identification
|
100 |
+
identification_model = load_identification_model()
|
101 |
+
detections = []
|
102 |
+
for file in sorted(os.listdir("data/segmented_objects")):
|
103 |
+
f = os.path.join("data/segmented_objects", file)
|
104 |
+
obj_detections = identification_model.identify_objects(f, class_name)
|
105 |
+
if obj_detections: # Only append if the object was identified
|
106 |
+
class_name.remove(obj_detections[0]['description'])
|
107 |
+
detections.extend(obj_detections)
|
108 |
+
logging.debug(f"Detections: {len(detections)} objects identified")
|
109 |
+
|
110 |
+
# Match detections to segmented objects
|
111 |
+
object_descriptions = []
|
112 |
+
for obj, det in zip(objects, detections):
|
113 |
+
if det:
|
114 |
+
object_descriptions.append(f"This is a {det['description']} with confidence {det['probability']:.2f}")
|
115 |
+
else:
|
116 |
+
object_descriptions.append("Unidentified object")
|
117 |
+
logging.debug(f"Object description: {detections}")
|
118 |
+
|
119 |
+
output_dir = "data/output"
|
120 |
+
if not os.path.exists(output_dir):
|
121 |
+
os.makedirs(output_dir)
|
122 |
+
# Save detections
|
123 |
+
with open("data/output/detections.json", "w") as f:
|
124 |
+
json.dump(detections, f)
|
125 |
+
logging.debug("Detections saved to data/output/detections.json")
|
126 |
+
|
127 |
+
# Text extraction
|
128 |
+
text_extraction_model = load_text_extraction_model()
|
129 |
+
extracted_texts = [text_extraction_model.extract_text(obj[1]) for obj in objects]
|
130 |
+
logging.debug(f"Extracted texts: {extracted_texts}")
|
131 |
+
|
132 |
+
# Summarization
|
133 |
+
summarization_model = load_summarization_model()
|
134 |
+
summaries = [summarization_model.summarize(f"{desc} {text}") for desc, text in zip(object_descriptions, extracted_texts)]
|
135 |
+
logging.debug(f"Summaries: {summaries}")
|
136 |
+
|
137 |
+
# Data mapping
|
138 |
+
mapped_data = map_data(objects, detections, object_descriptions, extracted_texts, summaries)
|
139 |
+
save_mapped_data(mapped_data, "data/output/mapped_data.json")
|
140 |
+
|
141 |
+
# Visualization
|
142 |
+
visualize_segmentation(image, masks, "data/output/segmented_image.png")
|
143 |
+
visualize_detections(input_path, "data/output/detected_objects.png")
|
144 |
+
create_summary_table(mapped_data, "data/output/summary_table.csv")
|
145 |
+
|
146 |
+
# Load the images and table
|
147 |
+
|
148 |
+
# Initialize session state if not already done
|
149 |
+
if 'show_original_image' not in st.session_state:
|
150 |
+
st.session_state.show_original_image = False
|
151 |
+
if 'show_segmented_image' not in st.session_state:
|
152 |
+
st.session_state.show_segmented_image = False
|
153 |
+
if 'show_detected_objects' not in st.session_state:
|
154 |
+
st.session_state.show_detected_objects = False
|
155 |
+
if 'show_summary_table' not in st.session_state:
|
156 |
+
st.session_state.show_summary_table = False
|
157 |
+
|
158 |
+
button_col1, button_col2, button_col3, button_col4 = st.columns(4)
|
159 |
+
|
160 |
+
with button_col1:
|
161 |
+
if st.button("Show Original Image"):
|
162 |
+
st.session_state.show_original_image = not st.session_state.show_original_image
|
163 |
+
|
164 |
+
with button_col2:
|
165 |
+
if st.button("Show Segmented Image"):
|
166 |
+
st.session_state.show_segmented_image = not st.session_state.show_segmented_image
|
167 |
+
|
168 |
+
with button_col3:
|
169 |
+
if st.button("Show Detected Objects"):
|
170 |
+
st.session_state.show_detected_objects = not st.session_state.show_detected_objects
|
171 |
+
|
172 |
+
with button_col4:
|
173 |
+
if st.button("Show Summary Table"):
|
174 |
+
st.session_state.show_summary_table = not st.session_state.show_summary_table
|
175 |
+
|
176 |
+
# Display components based on session state
|
177 |
+
def resize_image(image_path, target_width, target_height):
|
178 |
+
image = Image.open(image_path)
|
179 |
+
resized_image = image.resize((target_width, target_height))
|
180 |
+
return resized_image
|
181 |
+
|
182 |
+
# Set desired width and height
|
183 |
+
IMAGE_WIDTH = 600
|
184 |
+
IMAGE_HEIGHT = 400
|
185 |
+
|
186 |
+
if st.session_state.show_original_image:
|
187 |
+
col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
|
188 |
+
with col2:
|
189 |
+
resized_image = resize_image(input_path, IMAGE_WIDTH, IMAGE_HEIGHT)
|
190 |
+
st.image(resized_image, caption="Original Image", use_column_width=True)
|
191 |
+
|
192 |
+
if st.session_state.show_segmented_image:
|
193 |
+
col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
|
194 |
+
with col2:
|
195 |
+
resized_image = resize_image("data/output/segmented_image.png", IMAGE_WIDTH, IMAGE_HEIGHT)
|
196 |
+
st.image(resized_image, caption="Segmented Image", use_column_width=True)
|
197 |
+
|
198 |
+
if st.session_state.show_detected_objects:
|
199 |
+
col1, col2, col3 = st.columns([0.3, 0.4, 0.3])
|
200 |
+
with col2:
|
201 |
+
resized_image = resize_image("data/output/detected_objects.png", IMAGE_WIDTH, IMAGE_HEIGHT)
|
202 |
+
st.image(resized_image, caption="Detected Objects", use_column_width=True)
|
203 |
+
|
204 |
+
if st.session_state.show_summary_table:
|
205 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
206 |
+
with col2:
|
207 |
+
summary_table = pd.read_csv("data/output/summary_table.csv")
|
208 |
+
st.table(summary_table)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
clip
|
4 |
+
easyocr
|
5 |
+
transformers
|
6 |
+
matplotlib
|
7 |
+
pandas
|
8 |
+
streamlit
|
9 |
+
Pillow
|
10 |
+
ultralytics
|
11 |
+
opencv-python-headless
|
utils/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
utils/data_mapping.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def map_data(objects,detections, descriptions, extracted_texts, summaries):
|
4 |
+
mapped_data = {}
|
5 |
+
for (obj_id, file_path, box),det, description, text, summary in zip(objects,detections, descriptions, extracted_texts, summaries):
|
6 |
+
mapped_data[obj_id] = {
|
7 |
+
"file_path": file_path,
|
8 |
+
"box": box,
|
9 |
+
"description": description,
|
10 |
+
"extracted_text": text,
|
11 |
+
"summary": summary
|
12 |
+
}
|
13 |
+
|
14 |
+
return mapped_data
|
15 |
+
|
16 |
+
def save_mapped_data(mapped_data, output_file):
|
17 |
+
with open(output_file, "w") as f:
|
18 |
+
json.dump(mapped_data, f, indent=2)
|
utils/postprocessing.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
def save_segmented_objects(image, masks, boxes, output_dir):
|
5 |
+
os.makedirs(output_dir, exist_ok=True)
|
6 |
+
objects = []
|
7 |
+
for i, (mask, box) in enumerate(zip(masks, boxes)):
|
8 |
+
obj_image = image.crop(box)
|
9 |
+
file_path = os.path.join(output_dir, f"object_{i}.png")
|
10 |
+
obj_image.save(file_path)
|
11 |
+
objects.append((f"object_{i}", file_path, box.tolist()))
|
12 |
+
return objects
|
utils/visualization.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import pandas as pd
|
3 |
+
import cv2
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from PIL import Image
|
6 |
+
def visualize_detections(image_path, output_path):
|
7 |
+
|
8 |
+
model = YOLO('yolov8s.pt') # You can change this to other YOLOv8 models as needed
|
9 |
+
# Read the image
|
10 |
+
image = cv2.imread(image_path)
|
11 |
+
|
12 |
+
# Run YOLOv8 inference on the image
|
13 |
+
results = model(image)
|
14 |
+
|
15 |
+
# Process the results and draw bounding boxes
|
16 |
+
for result in results:
|
17 |
+
boxes = result.boxes.cpu().numpy()
|
18 |
+
for box in boxes:
|
19 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
20 |
+
confidence = float(box.conf[0])
|
21 |
+
class_id = int(box.cls[0])
|
22 |
+
class_name = model.names[class_id]
|
23 |
+
|
24 |
+
# Draw bounding box
|
25 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
26 |
+
|
27 |
+
# Prepare label
|
28 |
+
label = f"{class_name}"
|
29 |
+
|
30 |
+
# Get label size
|
31 |
+
(label_width, label_height), baseline = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
32 |
+
|
33 |
+
# Draw filled rectangle for label background
|
34 |
+
cv2.rectangle(image, (x1, y1 - label_height - baseline), (x1 + label_width, y1), (0, 255, 0), cv2.FILLED)
|
35 |
+
|
36 |
+
# Put label text
|
37 |
+
cv2.putText(image, label, (x1, y1 - baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
|
38 |
+
|
39 |
+
# Save the output image
|
40 |
+
cv2.imwrite(output_path, image)
|
41 |
+
|
42 |
+
def visualize_segmentation(image, masks, output_file):
|
43 |
+
#plt.imshow(image)
|
44 |
+
for mask in masks:
|
45 |
+
plt.imshow(mask, alpha=0.5)
|
46 |
+
plt.axis('off')
|
47 |
+
plt.savefig(output_file,bbox_inches='tight', pad_inches=0)
|
48 |
+
plt.close()
|
49 |
+
|
50 |
+
|
51 |
+
def create_summary_table(mapped_data, output_file):
|
52 |
+
df = pd.DataFrame.from_dict(mapped_data, orient='index')
|
53 |
+
df.to_csv(output_file)
|