from transformers import BartForConditionalGeneration, BartTokenizer class SummarizationModel: def __init__(self): self.model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") def summarize(self, text): # Split the text into lines and remove empty lines lines = [line.strip() for line in text.split('\n') if line.strip()] # If there's only one line, return it as is if len(lines) <= 1: return text.strip() # Otherwise, proceed with summarization inputs = self.tokenizer([text], max_length=1024, return_tensors="pt", truncation=True) summary_ids = self.model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True) return self.tokenizer.decode(summary_ids[0], skip_special_tokens=True)