File size: 6,762 Bytes
6c6eb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import PIL.Image
import cv2
import torch
from loguru import logger
import numpy as np

from ..base import DiffusionInpaintModel
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
from ..original_sd_configs import get_config_files
from ..utils import (
    handle_from_pretrained_exceptions,
    get_torch_dtype,
    enable_low_mem,
    is_local_files_only,
)
from .brushnet import BrushNetModel
from .brushnet_unet_forward import brushnet_unet_forward
from .unet_2d_blocks import (
    CrossAttnDownBlock2D_forward,
    DownBlock2D_forward,
    CrossAttnUpBlock2D_forward,
    UpBlock2D_forward,
)
from ...schema import InpaintRequest, ModelType


class BrushNetWrapper(DiffusionInpaintModel):
    pad_mod = 8
    min_size = 512

    def init_model(self, device: torch.device, **kwargs):
        from .pipeline_brushnet import StableDiffusionBrushNetPipeline

        self.model_info = kwargs["model_info"]
        self.brushnet_method = kwargs["brushnet_method"]

        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
        self.torch_dtype = torch_dtype

        model_kwargs = {
            **kwargs.get("pipe_components", {}),
            "local_files_only": is_local_files_only(**kwargs),
        }
        self.local_files_only = model_kwargs["local_files_only"]

        disable_nsfw_checker = kwargs["disable_nsfw"] or kwargs.get(
            "cpu_offload", False
        )
        if disable_nsfw_checker:
            logger.info("Disable Stable Diffusion Model NSFW checker")
            model_kwargs.update(
                dict(
                    safety_checker=None,
                    feature_extractor=None,
                    requires_safety_checker=False,
                )
            )

        logger.info(f"Loading BrushNet model from {self.brushnet_method}")
        brushnet = BrushNetModel.from_pretrained(
            self.brushnet_method, torch_dtype=torch_dtype
        )

        if self.model_info.is_single_file_diffusers:
            if self.model_info.model_type == ModelType.DIFFUSERS_SD:
                model_kwargs["num_in_channels"] = 4
            else:
                model_kwargs["num_in_channels"] = 9

            self.model = StableDiffusionBrushNetPipeline.from_single_file(
                self.model_id_or_path,
                torch_dtype=torch_dtype,
                load_safety_checker=not disable_nsfw_checker,
                original_config_file=get_config_files()["v1"],
                brushnet=brushnet,
                **model_kwargs,
            )
        else:
            self.model = handle_from_pretrained_exceptions(
                StableDiffusionBrushNetPipeline.from_pretrained,
                pretrained_model_name_or_path=self.model_id_or_path,
                variant="fp16",
                torch_dtype=torch_dtype,
                brushnet=brushnet,
                **model_kwargs,
            )

        enable_low_mem(self.model, kwargs.get("low_mem", False))

        if kwargs.get("cpu_offload", False) and use_gpu:
            logger.info("Enable sequential cpu offload")
            self.model.enable_sequential_cpu_offload(gpu_id=0)
        else:
            self.model = self.model.to(device)
            if kwargs["sd_cpu_textencoder"]:
                logger.info("Run Stable Diffusion TextEncoder on CPU")
                self.model.text_encoder = CPUTextEncoderWrapper(
                    self.model.text_encoder, torch_dtype
                )

        self.callback = kwargs.pop("callback", None)

        # Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
        self.model.unet.forward = brushnet_unet_forward.__get__(
            self.model.unet, self.model.unet.__class__
        )

        for down_block in self.model.brushnet.down_blocks:
            down_block.forward = DownBlock2D_forward.__get__(
                down_block, down_block.__class__
            )
        for up_block in self.model.brushnet.up_blocks:
            up_block.forward = UpBlock2D_forward.__get__(up_block, up_block.__class__)

        # Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
        for down_block in self.model.unet.down_blocks:
            if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
                down_block.forward = CrossAttnDownBlock2D_forward.__get__(
                    down_block, down_block.__class__
                )
            else:
                down_block.forward = DownBlock2D_forward.__get__(
                    down_block, down_block.__class__
                )

        for up_block in self.model.unet.up_blocks:
            if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
                up_block.forward = CrossAttnUpBlock2D_forward.__get__(
                    up_block, up_block.__class__
                )
            else:
                up_block.forward = UpBlock2D_forward.__get__(
                    up_block, up_block.__class__
                )

    def switch_brushnet_method(self, new_method: str):
        self.brushnet_method = new_method
        brushnet = BrushNetModel.from_pretrained(
            new_method,
            local_files_only=self.local_files_only,
            torch_dtype=self.torch_dtype,
        ).to(self.model.device)
        self.model.brushnet = brushnet

    def forward(self, image, mask, config: InpaintRequest):
        """Input image and output image have same size

        image: [H, W, C] RGB

        mask: [H, W, 1] 255 means area to repaint

        return: BGR IMAGE

        """
        self.set_scheduler(config)

        img_h, img_w = image.shape[:2]
        normalized_mask = mask[:, :].astype("float32") / 255.0
        image = image * (1 - normalized_mask)
        image = image.astype(np.uint8)
        output = self.model(
            image=PIL.Image.fromarray(image),
            prompt=config.prompt,
            negative_prompt=config.negative_prompt,
            mask=PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB"),
            num_inference_steps=config.sd_steps,
            # strength=config.sd_strength,
            guidance_scale=config.sd_guidance_scale,
            output_type="np",
            callback_on_step_end=self.callback,
            height=img_h,
            width=img_w,
            generator=torch.manual_seed(config.sd_seed),
            brushnet_conditioning_scale=config.brushnet_conditioning_scale,
        ).images[0]

        output = (output * 255).round().astype("uint8")
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return output