File size: 7,150 Bytes
6c6eb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from itertools import chain

import PIL.Image
import cv2
import torch
from iopaint.model.original_sd_configs import get_config_files
from loguru import logger
from transformers import CLIPTextModel, CLIPTokenizer
import numpy as np

from ..base import DiffusionInpaintModel
from ..helper.cpu_text_encoder import CPUTextEncoderWrapper
from ..utils import (
    get_torch_dtype,
    enable_low_mem,
    is_local_files_only,
    handle_from_pretrained_exceptions,
)
from .powerpaint_tokenizer import task_to_prompt
from iopaint.schema import InpaintRequest, ModelType
from .v2.BrushNet_CA import BrushNetModel
from .v2.unet_2d_condition import UNet2DConditionModel_forward
from .v2.unet_2d_blocks import (
    CrossAttnDownBlock2D_forward,
    DownBlock2D_forward,
    CrossAttnUpBlock2D_forward,
    UpBlock2D_forward,
)


class PowerPaintV2(DiffusionInpaintModel):
    pad_mod = 8
    min_size = 512
    lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5"
    hf_model_id = "Sanster/PowerPaint_v2"

    def init_model(self, device: torch.device, **kwargs):
        from .v2.pipeline_PowerPaint_Brushnet_CA import (
            StableDiffusionPowerPaintBrushNetPipeline,
        )
        from .powerpaint_tokenizer import PowerPaintTokenizer

        use_gpu, torch_dtype = get_torch_dtype(device, kwargs.get("no_half", False))
        model_kwargs = {"local_files_only": is_local_files_only(**kwargs)}
        if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False):
            logger.info("Disable Stable Diffusion Model NSFW checker")
            model_kwargs.update(
                dict(
                    safety_checker=None,
                    feature_extractor=None,
                    requires_safety_checker=False,
                )
            )

        text_encoder_brushnet = CLIPTextModel.from_pretrained(
            self.hf_model_id,
            subfolder="text_encoder_brushnet",
            variant="fp16",
            torch_dtype=torch_dtype,
            local_files_only=model_kwargs["local_files_only"],
        )

        brushnet = BrushNetModel.from_pretrained(
            self.hf_model_id,
            subfolder="PowerPaint_Brushnet",
            variant="fp16",
            torch_dtype=torch_dtype,
            local_files_only=model_kwargs["local_files_only"],
        )

        if self.model_info.is_single_file_diffusers:
            if self.model_info.model_type == ModelType.DIFFUSERS_SD:
                model_kwargs["num_in_channels"] = 4
            else:
                model_kwargs["num_in_channels"] = 9

            pipe = StableDiffusionPowerPaintBrushNetPipeline.from_single_file(
                self.model_id_or_path,
                torch_dtype=torch_dtype,
                load_safety_checker=False,
                original_config_file=get_config_files()["v1"],
                brushnet=brushnet,
                text_encoder_brushnet=text_encoder_brushnet,
                **model_kwargs,
            )
        else:
            pipe = handle_from_pretrained_exceptions(
                StableDiffusionPowerPaintBrushNetPipeline.from_pretrained,
                pretrained_model_name_or_path=self.model_id_or_path,
                torch_dtype=torch_dtype,
                brushnet=brushnet,
                text_encoder_brushnet=text_encoder_brushnet,
                variant="fp16",
                **model_kwargs,
            )
        pipe.tokenizer = PowerPaintTokenizer(
            CLIPTokenizer.from_pretrained(self.hf_model_id, subfolder="tokenizer")
        )
        self.model = pipe

        enable_low_mem(self.model, kwargs.get("low_mem", False))

        if kwargs.get("cpu_offload", False) and use_gpu:
            logger.info("Enable sequential cpu offload")
            self.model.enable_sequential_cpu_offload(gpu_id=0)
        else:
            self.model = self.model.to(device)
            if kwargs["sd_cpu_textencoder"]:
                logger.info("Run Stable Diffusion TextEncoder on CPU")
                self.model.text_encoder = CPUTextEncoderWrapper(
                    self.model.text_encoder, torch_dtype
                )

        self.callback = kwargs.pop("callback", None)

        # Monkey patch the forward method of the UNet to use the brushnet_unet_forward method
        self.model.unet.forward = UNet2DConditionModel_forward.__get__(
            self.model.unet, self.model.unet.__class__
        )

        # Monkey patch unet down_blocks to use CrossAttnDownBlock2D_forward
        for down_block in chain(
            self.model.unet.down_blocks, self.model.brushnet.down_blocks
        ):
            if down_block.__class__.__name__ == "CrossAttnDownBlock2D":
                down_block.forward = CrossAttnDownBlock2D_forward.__get__(
                    down_block, down_block.__class__
                )
            else:
                down_block.forward = DownBlock2D_forward.__get__(
                    down_block, down_block.__class__
                )

        for up_block in chain(self.model.unet.up_blocks, self.model.brushnet.up_blocks):
            if up_block.__class__.__name__ == "CrossAttnUpBlock2D":
                up_block.forward = CrossAttnUpBlock2D_forward.__get__(
                    up_block, up_block.__class__
                )
            else:
                up_block.forward = UpBlock2D_forward.__get__(
                    up_block, up_block.__class__
                )

    def forward(self, image, mask, config: InpaintRequest):
        """Input image and output image have same size

        image: [H, W, C] RGB

        mask: [H, W, 1] 255 means area to repaint

        return: BGR IMAGE

        """
        self.set_scheduler(config)

        image = image * (1 - mask / 255.0)
        img_h, img_w = image.shape[:2]

        image = PIL.Image.fromarray(image.astype(np.uint8))
        mask = PIL.Image.fromarray(mask[:, :, -1], mode="L").convert("RGB")

        promptA, promptB, negative_promptA, negative_promptB = task_to_prompt(
            config.powerpaint_task
        )

        output = self.model(
            image=image,
            mask=mask,
            promptA=promptA,
            promptB=promptB,
            promptU=config.prompt,
            tradoff=config.fitting_degree,
            tradoff_nag=config.fitting_degree,
            negative_promptA=negative_promptA,
            negative_promptB=negative_promptB,
            negative_promptU=config.negative_prompt,
            num_inference_steps=config.sd_steps,
            # strength=config.sd_strength,
            brushnet_conditioning_scale=1.0,
            guidance_scale=config.sd_guidance_scale,
            output_type="np",
            callback_on_step_end=self.callback,
            height=img_h,
            width=img_w,
            generator=torch.manual_seed(config.sd_seed),
        ).images[0]

        output = (output * 255).round().astype("uint8")
        output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
        return output