File size: 9,693 Bytes
6c6eb37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import copy
import random
from typing import Any, List, Union
from transformers import CLIPTokenizer

from iopaint.schema import PowerPaintTask


def add_task_to_prompt(prompt, negative_prompt, task: PowerPaintTask):
    if task == PowerPaintTask.object_remove:
        promptA = prompt + " P_ctxt"
        promptB = prompt + " P_ctxt"
        negative_promptA = negative_prompt + " P_obj"
        negative_promptB = negative_prompt + " P_obj"
    elif task == PowerPaintTask.context_aware:
        promptA = prompt + " P_ctxt"
        promptB = prompt + " P_ctxt"
        negative_promptA = negative_prompt
        negative_promptB = negative_prompt
    elif task == PowerPaintTask.shape_guided:
        promptA = prompt + " P_shape"
        promptB = prompt + " P_ctxt"
        negative_promptA = negative_prompt
        negative_promptB = negative_prompt
    elif task == PowerPaintTask.outpainting:
        promptA = prompt + " P_ctxt"
        promptB = prompt + " P_ctxt"
        negative_promptA = negative_prompt + " P_obj"
        negative_promptB = negative_prompt + " P_obj"
    else:
        promptA = prompt + " P_obj"
        promptB = prompt + " P_obj"
        negative_promptA = negative_prompt
        negative_promptB = negative_prompt

    return promptA, promptB, negative_promptA, negative_promptB


def task_to_prompt(task: PowerPaintTask):
    promptA, promptB, negative_promptA, negative_promptB = add_task_to_prompt(
        "", "", task
    )
    return (
        promptA.strip(),
        promptB.strip(),
        negative_promptA.strip(),
        negative_promptB.strip(),
    )


class PowerPaintTokenizer:
    def __init__(self, tokenizer: CLIPTokenizer):
        self.wrapped = tokenizer
        self.token_map = {}
        placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"]
        num_vec_per_token = 10
        for placeholder_token in placeholder_tokens:
            output = []
            for i in range(num_vec_per_token):
                ith_token = placeholder_token + f"_{i}"
                output.append(ith_token)
            self.token_map[placeholder_token] = output

    def __getattr__(self, name: str) -> Any:
        if name == "wrapped":
            return super().__getattr__("wrapped")

        try:
            return getattr(self.wrapped, name)
        except AttributeError:
            try:
                return super().__getattr__(name)
            except AttributeError:
                raise AttributeError(
                    "'name' cannot be found in both "
                    f"'{self.__class__.__name__}' and "
                    f"'{self.__class__.__name__}.tokenizer'."
                )

    def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
        """Attempt to add tokens to the tokenizer.



        Args:

            tokens (Union[str, List[str]]): The tokens to be added.

        """
        num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
        assert num_added_tokens != 0, (
            f"The tokenizer already contains the token {tokens}. Please pass "
            "a different `placeholder_token` that is not already in the "
            "tokenizer."
        )

    def get_token_info(self, token: str) -> dict:
        """Get the information of a token, including its start and end index in

        the current tokenizer.



        Args:

            token (str): The token to be queried.



        Returns:

            dict: The information of the token, including its start and end

                index in current tokenizer.

        """
        token_ids = self.__call__(token).input_ids
        start, end = token_ids[1], token_ids[-2] + 1
        return {"name": token, "start": start, "end": end}

    def add_placeholder_token(

        self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs

    ):
        """Add placeholder tokens to the tokenizer.



        Args:

            placeholder_token (str): The placeholder token to be added.

            num_vec_per_token (int, optional): The number of vectors of

                the added placeholder token.

            *args, **kwargs: The arguments for `self.wrapped.add_tokens`.

        """
        output = []
        if num_vec_per_token == 1:
            self.try_adding_tokens(placeholder_token, *args, **kwargs)
            output.append(placeholder_token)
        else:
            output = []
            for i in range(num_vec_per_token):
                ith_token = placeholder_token + f"_{i}"
                self.try_adding_tokens(ith_token, *args, **kwargs)
                output.append(ith_token)

        for token in self.token_map:
            if token in placeholder_token:
                raise ValueError(
                    f"The tokenizer already has placeholder token {token} "
                    f"that can get confused with {placeholder_token} "
                    "keep placeholder tokens independent"
                )
        self.token_map[placeholder_token] = output

    def replace_placeholder_tokens_in_text(

        self,

        text: Union[str, List[str]],

        vector_shuffle: bool = False,

        prop_tokens_to_load: float = 1.0,

    ) -> Union[str, List[str]]:
        """Replace the keywords in text with placeholder tokens. This function

        will be called in `self.__call__` and `self.encode`.



        Args:

            text (Union[str, List[str]]): The text to be processed.

            vector_shuffle (bool, optional): Whether to shuffle the vectors.

                Defaults to False.

            prop_tokens_to_load (float, optional): The proportion of tokens to

                be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.



        Returns:

            Union[str, List[str]]: The processed text.

        """
        if isinstance(text, list):
            output = []
            for i in range(len(text)):
                output.append(
                    self.replace_placeholder_tokens_in_text(
                        text[i], vector_shuffle=vector_shuffle
                    )
                )
            return output

        for placeholder_token in self.token_map:
            if placeholder_token in text:
                tokens = self.token_map[placeholder_token]
                tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
                if vector_shuffle:
                    tokens = copy.copy(tokens)
                    random.shuffle(tokens)
                text = text.replace(placeholder_token, " ".join(tokens))
        return text

    def replace_text_with_placeholder_tokens(

        self, text: Union[str, List[str]]

    ) -> Union[str, List[str]]:
        """Replace the placeholder tokens in text with the original keywords.

        This function will be called in `self.decode`.



        Args:

            text (Union[str, List[str]]): The text to be processed.



        Returns:

            Union[str, List[str]]: The processed text.

        """
        if isinstance(text, list):
            output = []
            for i in range(len(text)):
                output.append(self.replace_text_with_placeholder_tokens(text[i]))
            return output

        for placeholder_token, tokens in self.token_map.items():
            merged_tokens = " ".join(tokens)
            if merged_tokens in text:
                text = text.replace(merged_tokens, placeholder_token)
        return text

    def __call__(

        self,

        text: Union[str, List[str]],

        *args,

        vector_shuffle: bool = False,

        prop_tokens_to_load: float = 1.0,

        **kwargs,

    ):
        """The call function of the wrapper.



        Args:

            text (Union[str, List[str]]): The text to be tokenized.

            vector_shuffle (bool, optional): Whether to shuffle the vectors.

                Defaults to False.

            prop_tokens_to_load (float, optional): The proportion of tokens to

                be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0

            *args, **kwargs: The arguments for `self.wrapped.__call__`.

        """
        replaced_text = self.replace_placeholder_tokens_in_text(
            text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
        )

        return self.wrapped.__call__(replaced_text, *args, **kwargs)

    def encode(self, text: Union[str, List[str]], *args, **kwargs):
        """Encode the passed text to token index.



        Args:

            text (Union[str, List[str]]): The text to be encode.

            *args, **kwargs: The arguments for `self.wrapped.__call__`.

        """
        replaced_text = self.replace_placeholder_tokens_in_text(text)
        return self.wrapped(replaced_text, *args, **kwargs)

    def decode(

        self, token_ids, return_raw: bool = False, *args, **kwargs

    ) -> Union[str, List[str]]:
        """Decode the token index to text.



        Args:

            token_ids: The token index to be decoded.

            return_raw: Whether keep the placeholder token in the text.

                Defaults to False.

            *args, **kwargs: The arguments for `self.wrapped.decode`.



        Returns:

            Union[str, List[str]]: The decoded text.

        """
        text = self.wrapped.decode(token_ids, *args, **kwargs)
        if return_raw:
            return text
        replaced_text = self.replace_text_with_placeholder_tokens(text)
        return replaced_text