|
|
|
import os
|
|
import math
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from functools import partial
|
|
import torch.nn.functional as F
|
|
from transformers import PreTrainedModel
|
|
from transformers import PretrainedConfig
|
|
|
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
|
|
import torch.utils.checkpoint as checkpoint
|
|
|
|
from collections import OrderedDict
|
|
|
|
from torchvision.models import (
|
|
vgg16,
|
|
vgg16_bn,
|
|
VGG16_Weights,
|
|
VGG16_BN_Weights,
|
|
resnet50,
|
|
ResNet50_Weights,
|
|
)
|
|
|
|
|
|
class Config:
|
|
def __init__(self) -> None:
|
|
|
|
self.sys_home_dir = os.path.expanduser(
|
|
"~"
|
|
)
|
|
|
|
|
|
self.task = ["DIS5K", "COD", "HRSOD", "DIS5K+HRSOD+HRS10K", "P3M-10k"][0]
|
|
self.training_set = {
|
|
"DIS5K": ["DIS-TR", "DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4"][0],
|
|
"COD": "TR-COD10K+TR-CAMO",
|
|
"HRSOD": [
|
|
"TR-DUTS",
|
|
"TR-HRSOD",
|
|
"TR-UHRSD",
|
|
"TR-DUTS+TR-HRSOD",
|
|
"TR-DUTS+TR-UHRSD",
|
|
"TR-HRSOD+TR-UHRSD",
|
|
"TR-DUTS+TR-HRSOD+TR-UHRSD",
|
|
][5],
|
|
"DIS5K+HRSOD+HRS10K": "DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD",
|
|
"P3M-10k": "TR-P3M-10k",
|
|
}[self.task]
|
|
self.prompt4loc = ["dense", "sparse"][0]
|
|
|
|
|
|
self.load_all = True
|
|
self.compile = True
|
|
|
|
|
|
|
|
self.precisionHigh = True
|
|
|
|
|
|
self.ms_supervision = True
|
|
self.out_ref = self.ms_supervision and True
|
|
self.dec_ipt = True
|
|
self.dec_ipt_split = True
|
|
self.cxt_num = [0, 3][1]
|
|
self.mul_scl_ipt = ["", "add", "cat"][2]
|
|
self.dec_att = ["", "ASPP", "ASPPDeformable"][2]
|
|
self.squeeze_block = [
|
|
"",
|
|
"BasicDecBlk_x1",
|
|
"ResBlk_x4",
|
|
"ASPP_x3",
|
|
"ASPPDeformable_x3",
|
|
][1]
|
|
self.dec_blk = ["BasicDecBlk", "ResBlk", "HierarAttDecBlk"][0]
|
|
|
|
|
|
self.batch_size = 4
|
|
self.IoU_finetune_last_epochs = [
|
|
0,
|
|
{
|
|
"DIS5K": -50,
|
|
"COD": -20,
|
|
"HRSOD": -20,
|
|
"DIS5K+HRSOD+HRS10K": -20,
|
|
"P3M-10k": -20,
|
|
}[self.task],
|
|
][1]
|
|
self.lr = (1e-4 if "DIS5K" in self.task else 1e-5) * math.sqrt(
|
|
self.batch_size / 4
|
|
)
|
|
self.size = 1024
|
|
self.num_workers = max(
|
|
4, self.batch_size
|
|
)
|
|
|
|
|
|
self.bb = [
|
|
"vgg16",
|
|
"vgg16bn",
|
|
"resnet50",
|
|
"swin_v1_t",
|
|
"swin_v1_s",
|
|
"swin_v1_b",
|
|
"swin_v1_l",
|
|
"pvt_v2_b0",
|
|
"pvt_v2_b1",
|
|
"pvt_v2_b2",
|
|
"pvt_v2_b5",
|
|
][6]
|
|
self.lateral_channels_in_collection = {
|
|
"vgg16": [512, 256, 128, 64],
|
|
"vgg16bn": [512, 256, 128, 64],
|
|
"resnet50": [1024, 512, 256, 64],
|
|
"pvt_v2_b2": [512, 320, 128, 64],
|
|
"pvt_v2_b5": [512, 320, 128, 64],
|
|
"swin_v1_b": [1024, 512, 256, 128],
|
|
"swin_v1_l": [1536, 768, 384, 192],
|
|
"swin_v1_t": [768, 384, 192, 96],
|
|
"swin_v1_s": [768, 384, 192, 96],
|
|
"pvt_v2_b0": [256, 160, 64, 32],
|
|
"pvt_v2_b1": [512, 320, 128, 64],
|
|
}[self.bb]
|
|
if self.mul_scl_ipt == "cat":
|
|
self.lateral_channels_in_collection = [
|
|
channel * 2 for channel in self.lateral_channels_in_collection
|
|
]
|
|
self.cxt = (
|
|
self.lateral_channels_in_collection[1:][::-1][-self.cxt_num :]
|
|
if self.cxt_num
|
|
else []
|
|
)
|
|
|
|
|
|
self.lat_blk = ["BasicLatBlk"][0]
|
|
self.dec_channels_inter = ["fixed", "adap"][0]
|
|
self.refine = ["", "itself", "RefUNet", "Refiner", "RefinerPVTInChannels4"][0]
|
|
self.progressive_ref = self.refine and True
|
|
self.ender = self.progressive_ref and False
|
|
self.scale = self.progressive_ref and 2
|
|
self.auxiliary_classification = (
|
|
False
|
|
)
|
|
self.refine_iteration = 1
|
|
self.freeze_bb = False
|
|
self.model = [
|
|
"BiRefNet",
|
|
][0]
|
|
if self.dec_blk == "HierarAttDecBlk":
|
|
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
|
|
|
|
|
|
self.preproc_methods = ["flip", "enhance", "rotate", "pepper", "crop"][:4]
|
|
self.optimizer = ["Adam", "AdamW"][1]
|
|
self.lr_decay_epochs = [
|
|
1e5
|
|
]
|
|
self.lr_decay_rate = 0.5
|
|
|
|
self.lambdas_pix_last = {
|
|
|
|
|
|
"bce": 30 * 1,
|
|
"iou": 0.5 * 1,
|
|
"iou_patch": 0.5 * 0,
|
|
"mse": 150 * 0,
|
|
"triplet": 3 * 0,
|
|
"reg": 100 * 0,
|
|
"ssim": 10 * 1,
|
|
"cnt": 5 * 0,
|
|
"structure": 5
|
|
* 0,
|
|
}
|
|
self.lambdas_cls = {"ce": 5.0}
|
|
|
|
self.lambda_adv_g = 10.0 * 0
|
|
self.lambda_adv_d = 3.0 * (self.lambda_adv_g > 0)
|
|
|
|
|
|
self.data_root_dir = os.path.join(self.sys_home_dir, "datasets/dis")
|
|
self.weights_root_dir = os.path.join(self.sys_home_dir, "weights")
|
|
self.weights = {
|
|
"pvt_v2_b2": os.path.join(self.weights_root_dir, "pvt_v2_b2.pth"),
|
|
"pvt_v2_b5": os.path.join(
|
|
self.weights_root_dir, ["pvt_v2_b5.pth", "pvt_v2_b5_22k.pth"][0]
|
|
),
|
|
"swin_v1_b": os.path.join(
|
|
self.weights_root_dir,
|
|
[
|
|
"swin_base_patch4_window12_384_22kto1k.pth",
|
|
"swin_base_patch4_window12_384_22k.pth",
|
|
][0],
|
|
),
|
|
"swin_v1_l": os.path.join(
|
|
self.weights_root_dir,
|
|
[
|
|
"swin_large_patch4_window12_384_22kto1k.pth",
|
|
"swin_large_patch4_window12_384_22k.pth",
|
|
][0],
|
|
),
|
|
"swin_v1_t": os.path.join(
|
|
self.weights_root_dir,
|
|
["swin_tiny_patch4_window7_224_22kto1k_finetune.pth"][0],
|
|
),
|
|
"swin_v1_s": os.path.join(
|
|
self.weights_root_dir,
|
|
["swin_small_patch4_window7_224_22kto1k_finetune.pth"][0],
|
|
),
|
|
"pvt_v2_b0": os.path.join(self.weights_root_dir, ["pvt_v2_b0.pth"][0]),
|
|
"pvt_v2_b1": os.path.join(self.weights_root_dir, ["pvt_v2_b1.pth"][0]),
|
|
}
|
|
|
|
|
|
self.verbose_eval = True
|
|
self.only_S_MAE = False
|
|
self.use_fp16 = False
|
|
self.SDPA_enabled = False
|
|
|
|
|
|
self.device = [0, "cpu"][0]
|
|
|
|
self.batch_size_valid = 1
|
|
self.rand_seed = 7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_task(self) -> None:
|
|
|
|
print(self.task)
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.dwconv = DWConv(hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
x = self.fc1(x)
|
|
x = self.dwconv(x, H, W)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads=8,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
sr_ratio=1,
|
|
):
|
|
super().__init__()
|
|
assert (
|
|
dim % num_heads == 0
|
|
), f"dim {dim} should be divided by num_heads {num_heads}."
|
|
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
|
self.attn_drop_prob = attn_drop
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.sr_ratio = sr_ratio
|
|
if sr_ratio > 1:
|
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
q = (
|
|
self.q(x)
|
|
.reshape(B, N, self.num_heads, C // self.num_heads)
|
|
.permute(0, 2, 1, 3)
|
|
)
|
|
|
|
if self.sr_ratio > 1:
|
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
|
x_ = self.norm(x_)
|
|
kv = (
|
|
self.kv(x_)
|
|
.reshape(B, -1, 2, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
else:
|
|
kv = (
|
|
self.kv(x)
|
|
.reshape(B, -1, 2, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
k, v = kv[0], kv[1]
|
|
|
|
if config.SDPA_enabled:
|
|
x = (
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=self.attn_drop_prob,
|
|
is_causal=False,
|
|
)
|
|
.transpose(1, 2)
|
|
.reshape(B, N, C)
|
|
)
|
|
else:
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
sr_ratio=1,
|
|
):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
sr_ratio=sr_ratio,
|
|
)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x, H, W):
|
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
|
|
|
return x
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module):
|
|
"""Image to Patch Embedding"""
|
|
|
|
def __init__(
|
|
self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768
|
|
):
|
|
super().__init__()
|
|
img_size = to_2tuple(img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
|
|
self.img_size = img_size
|
|
self.patch_size = patch_size
|
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
|
self.num_patches = self.H * self.W
|
|
self.proj = nn.Conv2d(
|
|
in_channels,
|
|
embed_dim,
|
|
kernel_size=patch_size,
|
|
stride=stride,
|
|
padding=(patch_size[0] // 2, patch_size[1] // 2),
|
|
)
|
|
self.norm = nn.LayerNorm(embed_dim)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
_, _, H, W = x.shape
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
|
|
return x, H, W
|
|
|
|
|
|
class PyramidVisionTransformerImpr(nn.Module):
|
|
def __init__(
|
|
self,
|
|
img_size=224,
|
|
patch_size=16,
|
|
in_channels=3,
|
|
num_classes=1000,
|
|
embed_dims=[64, 128, 256, 512],
|
|
num_heads=[1, 2, 4, 8],
|
|
mlp_ratios=[4, 4, 4, 4],
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
):
|
|
super().__init__()
|
|
self.num_classes = num_classes
|
|
self.depths = depths
|
|
|
|
|
|
self.patch_embed1 = OverlapPatchEmbed(
|
|
img_size=img_size,
|
|
patch_size=7,
|
|
stride=4,
|
|
in_channels=in_channels,
|
|
embed_dim=embed_dims[0],
|
|
)
|
|
self.patch_embed2 = OverlapPatchEmbed(
|
|
img_size=img_size // 4,
|
|
patch_size=3,
|
|
stride=2,
|
|
in_channels=embed_dims[0],
|
|
embed_dim=embed_dims[1],
|
|
)
|
|
self.patch_embed3 = OverlapPatchEmbed(
|
|
img_size=img_size // 8,
|
|
patch_size=3,
|
|
stride=2,
|
|
in_channels=embed_dims[1],
|
|
embed_dim=embed_dims[2],
|
|
)
|
|
self.patch_embed4 = OverlapPatchEmbed(
|
|
img_size=img_size // 16,
|
|
patch_size=3,
|
|
stride=2,
|
|
in_channels=embed_dims[2],
|
|
embed_dim=embed_dims[3],
|
|
)
|
|
|
|
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
|
]
|
|
cur = 0
|
|
self.block1 = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dims[0],
|
|
num_heads=num_heads[0],
|
|
mlp_ratio=mlp_ratios[0],
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[cur + i],
|
|
norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[0],
|
|
)
|
|
for i in range(depths[0])
|
|
]
|
|
)
|
|
self.norm1 = norm_layer(embed_dims[0])
|
|
|
|
cur += depths[0]
|
|
self.block2 = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dims[1],
|
|
num_heads=num_heads[1],
|
|
mlp_ratio=mlp_ratios[1],
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[cur + i],
|
|
norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[1],
|
|
)
|
|
for i in range(depths[1])
|
|
]
|
|
)
|
|
self.norm2 = norm_layer(embed_dims[1])
|
|
|
|
cur += depths[1]
|
|
self.block3 = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dims[2],
|
|
num_heads=num_heads[2],
|
|
mlp_ratio=mlp_ratios[2],
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[cur + i],
|
|
norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[2],
|
|
)
|
|
for i in range(depths[2])
|
|
]
|
|
)
|
|
self.norm3 = norm_layer(embed_dims[2])
|
|
|
|
cur += depths[2]
|
|
self.block4 = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dims[3],
|
|
num_heads=num_heads[3],
|
|
mlp_ratio=mlp_ratios[3],
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[cur + i],
|
|
norm_layer=norm_layer,
|
|
sr_ratio=sr_ratios[3],
|
|
)
|
|
for i in range(depths[3])
|
|
]
|
|
)
|
|
self.norm4 = norm_layer(embed_dims[3])
|
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
elif isinstance(m, nn.Conv2d):
|
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
|
fan_out //= m.groups
|
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
|
if m.bias is not None:
|
|
m.bias.data.zero_()
|
|
|
|
def init_weights(self, pretrained=None):
|
|
if isinstance(pretrained, str):
|
|
logger = 1
|
|
|
|
|
|
def reset_drop_path(self, drop_path_rate):
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
|
cur = 0
|
|
for i in range(self.depths[0]):
|
|
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[0]
|
|
for i in range(self.depths[1]):
|
|
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[1]
|
|
for i in range(self.depths[2]):
|
|
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
cur += self.depths[2]
|
|
for i in range(self.depths[3]):
|
|
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
|
|
|
def freeze_patch_emb(self):
|
|
self.patch_embed1.requires_grad = False
|
|
|
|
@torch.jit.ignore
|
|
def no_weight_decay(self):
|
|
return {
|
|
"pos_embed1",
|
|
"pos_embed2",
|
|
"pos_embed3",
|
|
"pos_embed4",
|
|
"cls_token",
|
|
}
|
|
|
|
def get_classifier(self):
|
|
return self.head
|
|
|
|
def reset_classifier(self, num_classes, global_pool=""):
|
|
self.num_classes = num_classes
|
|
self.head = (
|
|
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
)
|
|
|
|
def forward_features(self, x):
|
|
B = x.shape[0]
|
|
outs = []
|
|
|
|
|
|
x, H, W = self.patch_embed1(x)
|
|
for i, blk in enumerate(self.block1):
|
|
x = blk(x, H, W)
|
|
x = self.norm1(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
|
|
x, H, W = self.patch_embed2(x)
|
|
for i, blk in enumerate(self.block2):
|
|
x = blk(x, H, W)
|
|
x = self.norm2(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
|
|
x, H, W = self.patch_embed3(x)
|
|
for i, blk in enumerate(self.block3):
|
|
x = blk(x, H, W)
|
|
x = self.norm3(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
|
|
x, H, W = self.patch_embed4(x)
|
|
for i, blk in enumerate(self.block4):
|
|
x = blk(x, H, W)
|
|
x = self.norm4(x)
|
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
|
outs.append(x)
|
|
|
|
return outs
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
x = self.forward_features(x)
|
|
|
|
|
|
return x
|
|
|
|
|
|
class DWConv(nn.Module):
|
|
def __init__(self, dim=768):
|
|
super(DWConv, self).__init__()
|
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
|
|
|
def forward(self, x, H, W):
|
|
B, N, C = x.shape
|
|
x = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
|
x = self.dwconv(x)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
return x
|
|
|
|
|
|
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
|
def __init__(self, **kwargs):
|
|
super(pvt_v2_b0, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[32, 64, 160, 256],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[2, 2, 2, 2],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
)
|
|
|
|
|
|
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
|
def __init__(self, **kwargs):
|
|
super(pvt_v2_b1, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[2, 2, 2, 2],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
)
|
|
|
|
|
|
|
|
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
|
def __init__(self, in_channels=3, **kwargs):
|
|
super(pvt_v2_b2, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[3, 4, 6, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
in_channels=in_channels,
|
|
)
|
|
|
|
|
|
|
|
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
|
def __init__(self, **kwargs):
|
|
super(pvt_v2_b3, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[3, 4, 18, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
)
|
|
|
|
|
|
|
|
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
|
def __init__(self, **kwargs):
|
|
super(pvt_v2_b4, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[8, 8, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[3, 8, 27, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
)
|
|
|
|
|
|
|
|
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
|
def __init__(self, **kwargs):
|
|
super(pvt_v2_b5, self).__init__(
|
|
patch_size=4,
|
|
embed_dims=[64, 128, 320, 512],
|
|
num_heads=[1, 2, 5, 8],
|
|
mlp_ratios=[4, 4, 4, 4],
|
|
qkv_bias=True,
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
depths=[3, 6, 40, 3],
|
|
sr_ratios=[8, 4, 2, 1],
|
|
drop_rate=0.0,
|
|
drop_path_rate=0.1,
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
"""Multilayer perceptron."""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
hidden_features=None,
|
|
out_features=None,
|
|
act_layer=nn.GELU,
|
|
drop=0.0,
|
|
):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
self.act = act_layer()
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.drop(x)
|
|
x = self.fc2(x)
|
|
x = self.drop(x)
|
|
return x
|
|
|
|
|
|
def window_partition(x, window_size):
|
|
"""
|
|
Args:
|
|
x: (B, H, W, C)
|
|
window_size (int): window size
|
|
|
|
Returns:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
"""
|
|
B, H, W, C = x.shape
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
|
windows = (
|
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
)
|
|
return windows
|
|
|
|
|
|
def window_reverse(windows, window_size, H, W):
|
|
"""
|
|
Args:
|
|
windows: (num_windows*B, window_size, window_size, C)
|
|
window_size (int): Window size
|
|
H (int): Height of image
|
|
W (int): Width of image
|
|
|
|
Returns:
|
|
x: (B, H, W, C)
|
|
"""
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
|
x = windows.view(
|
|
B, H // window_size, W // window_size, window_size, window_size, -1
|
|
)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
|
return x
|
|
|
|
|
|
class WindowAttention(nn.Module):
|
|
"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
|
It supports both of shifted and non-shifted window.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
window_size (tuple[int]): The height and width of the window.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
window_size,
|
|
num_heads,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
proj_drop=0.0,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.window_size = window_size
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter(
|
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
|
)
|
|
|
|
|
|
coords_h = torch.arange(self.window_size[0])
|
|
coords_w = torch.arange(self.window_size[1])
|
|
coords = torch.stack(
|
|
torch.meshgrid([coords_h, coords_w], indexing="ij")
|
|
)
|
|
coords_flatten = torch.flatten(coords, 1)
|
|
relative_coords = (
|
|
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
|
)
|
|
relative_coords = relative_coords.permute(
|
|
1, 2, 0
|
|
).contiguous()
|
|
relative_coords[:, :, 0] += self.window_size[0] - 1
|
|
relative_coords[:, :, 1] += self.window_size[1] - 1
|
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
|
relative_position_index = relative_coords.sum(-1)
|
|
self.register_buffer("relative_position_index", relative_position_index)
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop_prob = attn_drop
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
|
self.softmax = nn.Softmax(dim=-1)
|
|
|
|
def forward(self, x, mask=None):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x: input features with shape of (num_windows*B, N, C)
|
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
|
"""
|
|
B_, N, C = x.shape
|
|
qkv = (
|
|
self.qkv(x)
|
|
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
|
.permute(2, 0, 3, 1, 4)
|
|
)
|
|
q, k, v = (
|
|
qkv[0],
|
|
qkv[1],
|
|
qkv[2],
|
|
)
|
|
|
|
q = q * self.scale
|
|
|
|
if config.SDPA_enabled:
|
|
x = (
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=self.attn_drop_prob,
|
|
is_causal=False,
|
|
)
|
|
.transpose(1, 2)
|
|
.reshape(B_, N, C)
|
|
)
|
|
else:
|
|
attn = q @ k.transpose(-2, -1)
|
|
|
|
relative_position_bias = self.relative_position_bias_table[
|
|
self.relative_position_index.view(-1)
|
|
].view(
|
|
self.window_size[0] * self.window_size[1],
|
|
self.window_size[0] * self.window_size[1],
|
|
-1,
|
|
)
|
|
relative_position_bias = relative_position_bias.permute(
|
|
2, 0, 1
|
|
).contiguous()
|
|
attn = attn + relative_position_bias.unsqueeze(0)
|
|
|
|
if mask is not None:
|
|
nW = mask.shape[0]
|
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
|
|
1
|
|
).unsqueeze(0)
|
|
attn = attn.view(-1, self.num_heads, N, N)
|
|
attn = self.softmax(attn)
|
|
else:
|
|
attn = self.softmax(attn)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class SwinTransformerBlock(nn.Module):
|
|
"""Swin Transformer Block.
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
window_size (int): Window size.
|
|
shift_size (int): Shift size for SW-MSA.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
window_size=7,
|
|
shift_size=0,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.shift_size = shift_size
|
|
self.mlp_ratio = mlp_ratio
|
|
assert (
|
|
0 <= self.shift_size < self.window_size
|
|
), "shift_size must in 0-window_size"
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = WindowAttention(
|
|
dim,
|
|
window_size=to_2tuple(self.window_size),
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop,
|
|
proj_drop=drop,
|
|
)
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = Mlp(
|
|
in_features=dim,
|
|
hidden_features=mlp_hidden_dim,
|
|
act_layer=act_layer,
|
|
drop=drop,
|
|
)
|
|
|
|
self.H = None
|
|
self.W = None
|
|
|
|
def forward(self, x, mask_matrix):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
mask_matrix: Attention mask for cyclic shift.
|
|
"""
|
|
B, L, C = x.shape
|
|
H, W = self.H, self.W
|
|
assert L == H * W, "input feature has wrong size"
|
|
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
x = x.view(B, H, W, C)
|
|
|
|
|
|
pad_l = pad_t = 0
|
|
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
|
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
|
_, Hp, Wp, _ = x.shape
|
|
|
|
|
|
if self.shift_size > 0:
|
|
shifted_x = torch.roll(
|
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
|
|
)
|
|
attn_mask = mask_matrix
|
|
else:
|
|
shifted_x = x
|
|
attn_mask = None
|
|
|
|
|
|
x_windows = window_partition(
|
|
shifted_x, self.window_size
|
|
)
|
|
x_windows = x_windows.view(
|
|
-1, self.window_size * self.window_size, C
|
|
)
|
|
|
|
|
|
attn_windows = self.attn(
|
|
x_windows, mask=attn_mask
|
|
)
|
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)
|
|
|
|
|
|
if self.shift_size > 0:
|
|
x = torch.roll(
|
|
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
|
|
)
|
|
else:
|
|
x = shifted_x
|
|
|
|
if pad_r > 0 or pad_b > 0:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
|
|
x = x.view(B, H * W, C)
|
|
|
|
|
|
x = shortcut + self.drop_path(x)
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
class PatchMerging(nn.Module):
|
|
"""Patch Merging Layer
|
|
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
"""
|
|
|
|
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
|
self.norm = norm_layer(4 * dim)
|
|
|
|
def forward(self, x, H, W):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
"""
|
|
B, L, C = x.shape
|
|
assert L == H * W, "input feature has wrong size"
|
|
|
|
x = x.view(B, H, W, C)
|
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
|
if pad_input:
|
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
|
|
|
x0 = x[:, 0::2, 0::2, :]
|
|
x1 = x[:, 1::2, 0::2, :]
|
|
x2 = x[:, 0::2, 1::2, :]
|
|
x3 = x[:, 1::2, 1::2, :]
|
|
x = torch.cat([x0, x1, x2, x3], -1)
|
|
x = x.view(B, -1, 4 * C)
|
|
|
|
x = self.norm(x)
|
|
x = self.reduction(x)
|
|
|
|
return x
|
|
|
|
|
|
class BasicLayer(nn.Module):
|
|
"""A basic Swin Transformer layer for one stage.
|
|
|
|
Args:
|
|
dim (int): Number of feature channels
|
|
depth (int): Depths of this stage.
|
|
num_heads (int): Number of attention head.
|
|
window_size (int): Local window size. Default: 7.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop (float, optional): Dropout rate. Default: 0.0
|
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
depth,
|
|
num_heads,
|
|
window_size=7,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop=0.0,
|
|
attn_drop=0.0,
|
|
drop_path=0.0,
|
|
norm_layer=nn.LayerNorm,
|
|
downsample=None,
|
|
use_checkpoint=False,
|
|
):
|
|
super().__init__()
|
|
self.window_size = window_size
|
|
self.shift_size = window_size // 2
|
|
self.depth = depth
|
|
self.use_checkpoint = use_checkpoint
|
|
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
SwinTransformerBlock(
|
|
dim=dim,
|
|
num_heads=num_heads,
|
|
window_size=window_size,
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop,
|
|
attn_drop=attn_drop,
|
|
drop_path=drop_path[i]
|
|
if isinstance(drop_path, list)
|
|
else drop_path,
|
|
norm_layer=norm_layer,
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
|
|
|
|
if downsample is not None:
|
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x, H, W):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x: Input feature, tensor size (B, H*W, C).
|
|
H, W: Spatial resolution of the input feature.
|
|
"""
|
|
|
|
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)
|
|
h_slices = (
|
|
slice(0, -self.window_size),
|
|
slice(-self.window_size, -self.shift_size),
|
|
slice(-self.shift_size, None),
|
|
)
|
|
w_slices = (
|
|
slice(0, -self.window_size),
|
|
slice(-self.window_size, -self.shift_size),
|
|
slice(-self.shift_size, None),
|
|
)
|
|
cnt = 0
|
|
for h in h_slices:
|
|
for w in w_slices:
|
|
img_mask[:, h, w, :] = cnt
|
|
cnt += 1
|
|
|
|
mask_windows = window_partition(
|
|
img_mask, self.window_size
|
|
)
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
|
|
attn_mask == 0, float(0.0)
|
|
)
|
|
|
|
for blk in self.blocks:
|
|
blk.H, blk.W = H, W
|
|
if self.use_checkpoint:
|
|
x = checkpoint.checkpoint(blk, x, attn_mask)
|
|
else:
|
|
x = blk(x, attn_mask)
|
|
if self.downsample is not None:
|
|
x_down = self.downsample(x, H, W)
|
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
|
return x, H, W, x_down, Wh, Ww
|
|
else:
|
|
return x, H, W, x, H, W
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""Image to Patch Embedding
|
|
|
|
Args:
|
|
patch_size (int): Patch token size. Default: 4.
|
|
in_channels (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
|
"""
|
|
|
|
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
|
|
super().__init__()
|
|
patch_size = to_2tuple(patch_size)
|
|
self.patch_size = patch_size
|
|
|
|
self.in_channels = in_channels
|
|
self.embed_dim = embed_dim
|
|
|
|
self.proj = nn.Conv2d(
|
|
in_channels, embed_dim, kernel_size=patch_size, stride=patch_size
|
|
)
|
|
if norm_layer is not None:
|
|
self.norm = norm_layer(embed_dim)
|
|
else:
|
|
self.norm = None
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
|
|
_, _, H, W = x.size()
|
|
if W % self.patch_size[1] != 0:
|
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
|
if H % self.patch_size[0] != 0:
|
|
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
|
|
|
x = self.proj(x)
|
|
if self.norm is not None:
|
|
Wh, Ww = x.size(2), x.size(3)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
|
|
|
return x
|
|
|
|
|
|
class SwinTransformer(nn.Module):
|
|
"""Swin Transformer backbone.
|
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
|
https://arxiv.org/pdf/2103.14030
|
|
|
|
Args:
|
|
pretrain_img_size (int): Input image size for training the pretrained model,
|
|
used in absolute postion embedding. Default 224.
|
|
patch_size (int | tuple(int)): Patch size. Default: 4.
|
|
in_channels (int): Number of input image channels. Default: 3.
|
|
embed_dim (int): Number of linear projection output channels. Default: 96.
|
|
depths (tuple[int]): Depths of each Swin Transformer stage.
|
|
num_heads (tuple[int]): Number of attention head of each stage.
|
|
window_size (int): Window size. Default: 7.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
|
drop_rate (float): Dropout rate.
|
|
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
|
out_indices (Sequence[int]): Output from which stages.
|
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
|
-1 means not freezing any parameters.
|
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pretrain_img_size=224,
|
|
patch_size=4,
|
|
in_channels=3,
|
|
embed_dim=96,
|
|
depths=[2, 2, 6, 2],
|
|
num_heads=[3, 6, 12, 24],
|
|
window_size=7,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=True,
|
|
qk_scale=None,
|
|
drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.2,
|
|
norm_layer=nn.LayerNorm,
|
|
ape=False,
|
|
patch_norm=True,
|
|
out_indices=(0, 1, 2, 3),
|
|
frozen_stages=-1,
|
|
use_checkpoint=False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.pretrain_img_size = pretrain_img_size
|
|
self.num_layers = len(depths)
|
|
self.embed_dim = embed_dim
|
|
self.ape = ape
|
|
self.patch_norm = patch_norm
|
|
self.out_indices = out_indices
|
|
self.frozen_stages = frozen_stages
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=patch_size,
|
|
in_channels=in_channels,
|
|
embed_dim=embed_dim,
|
|
norm_layer=norm_layer if self.patch_norm else None,
|
|
)
|
|
|
|
|
|
if self.ape:
|
|
pretrain_img_size = to_2tuple(pretrain_img_size)
|
|
patch_size = to_2tuple(patch_size)
|
|
patches_resolution = [
|
|
pretrain_img_size[0] // patch_size[0],
|
|
pretrain_img_size[1] // patch_size[1],
|
|
]
|
|
|
|
self.absolute_pos_embed = nn.Parameter(
|
|
torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
|
|
)
|
|
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
dpr = [
|
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
|
|
]
|
|
|
|
|
|
self.layers = nn.ModuleList()
|
|
for i_layer in range(self.num_layers):
|
|
layer = BasicLayer(
|
|
dim=int(embed_dim * 2**i_layer),
|
|
depth=depths[i_layer],
|
|
num_heads=num_heads[i_layer],
|
|
window_size=window_size,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
|
|
norm_layer=norm_layer,
|
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
|
use_checkpoint=use_checkpoint,
|
|
)
|
|
self.layers.append(layer)
|
|
|
|
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
|
|
self.num_features = num_features
|
|
|
|
|
|
for i_layer in out_indices:
|
|
layer = norm_layer(num_features[i_layer])
|
|
layer_name = f"norm{i_layer}"
|
|
self.add_module(layer_name, layer)
|
|
|
|
self._freeze_stages()
|
|
|
|
def _freeze_stages(self):
|
|
if self.frozen_stages >= 0:
|
|
self.patch_embed.eval()
|
|
for param in self.patch_embed.parameters():
|
|
param.requires_grad = False
|
|
|
|
if self.frozen_stages >= 1 and self.ape:
|
|
self.absolute_pos_embed.requires_grad = False
|
|
|
|
if self.frozen_stages >= 2:
|
|
self.pos_drop.eval()
|
|
for i in range(0, self.frozen_stages - 1):
|
|
m = self.layers[i]
|
|
m.eval()
|
|
for param in m.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, x):
|
|
"""Forward function."""
|
|
x = self.patch_embed(x)
|
|
|
|
Wh, Ww = x.size(2), x.size(3)
|
|
if self.ape:
|
|
|
|
absolute_pos_embed = F.interpolate(
|
|
self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
|
|
)
|
|
x = x + absolute_pos_embed
|
|
|
|
outs = []
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.pos_drop(x)
|
|
for i in range(self.num_layers):
|
|
layer = self.layers[i]
|
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
|
|
|
if i in self.out_indices:
|
|
norm_layer = getattr(self, f"norm{i}")
|
|
x_out = norm_layer(x_out)
|
|
|
|
out = (
|
|
x_out.view(-1, H, W, self.num_features[i])
|
|
.permute(0, 3, 1, 2)
|
|
.contiguous()
|
|
)
|
|
outs.append(out)
|
|
|
|
return tuple(outs)
|
|
|
|
def train(self, mode=True):
|
|
"""Convert the model into training mode while keep layers freezed."""
|
|
super(SwinTransformer, self).train(mode)
|
|
self._freeze_stages()
|
|
|
|
|
|
def swin_v1_t():
|
|
model = SwinTransformer(
|
|
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
|
|
)
|
|
return model
|
|
|
|
|
|
def swin_v1_s():
|
|
model = SwinTransformer(
|
|
embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7
|
|
)
|
|
return model
|
|
|
|
|
|
def swin_v1_b():
|
|
model = SwinTransformer(
|
|
embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
|
|
)
|
|
return model
|
|
|
|
|
|
def swin_v1_l():
|
|
model = SwinTransformer(
|
|
embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
|
|
)
|
|
return model
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision.ops import deform_conv2d
|
|
|
|
|
|
class DeformableConv2d(nn.Module):
|
|
def __init__(
|
|
self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False
|
|
):
|
|
super(DeformableConv2d, self).__init__()
|
|
|
|
assert type(kernel_size) == tuple or type(kernel_size) == int
|
|
|
|
kernel_size = (
|
|
kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
|
|
)
|
|
self.stride = stride if type(stride) == tuple else (stride, stride)
|
|
self.padding = padding
|
|
|
|
self.offset_conv = nn.Conv2d(
|
|
in_channels,
|
|
2 * kernel_size[0] * kernel_size[1],
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=self.padding,
|
|
bias=True,
|
|
)
|
|
|
|
nn.init.constant_(self.offset_conv.weight, 0.0)
|
|
nn.init.constant_(self.offset_conv.bias, 0.0)
|
|
|
|
self.modulator_conv = nn.Conv2d(
|
|
in_channels,
|
|
1 * kernel_size[0] * kernel_size[1],
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=self.padding,
|
|
bias=True,
|
|
)
|
|
|
|
nn.init.constant_(self.modulator_conv.weight, 0.0)
|
|
nn.init.constant_(self.modulator_conv.bias, 0.0)
|
|
|
|
self.regular_conv = nn.Conv2d(
|
|
in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=self.padding,
|
|
bias=bias,
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
|
|
offset = self.offset_conv(x)
|
|
modulator = 2.0 * torch.sigmoid(self.modulator_conv(x))
|
|
|
|
x = deform_conv2d(
|
|
input=x,
|
|
offset=offset,
|
|
weight=self.regular_conv.weight,
|
|
bias=self.regular_conv.bias,
|
|
padding=self.padding,
|
|
mask=modulator,
|
|
stride=self.stride,
|
|
)
|
|
return x
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
def build_act_layer(act_layer):
|
|
if act_layer == "ReLU":
|
|
return nn.ReLU(inplace=True)
|
|
elif act_layer == "SiLU":
|
|
return nn.SiLU(inplace=True)
|
|
elif act_layer == "GELU":
|
|
return nn.GELU()
|
|
|
|
raise NotImplementedError(f"build_act_layer does not support {act_layer}")
|
|
|
|
|
|
def build_norm_layer(
|
|
dim, norm_layer, in_format="channels_last", out_format="channels_last", eps=1e-6
|
|
):
|
|
layers = []
|
|
if norm_layer == "BN":
|
|
if in_format == "channels_last":
|
|
layers.append(to_channels_first())
|
|
layers.append(nn.BatchNorm2d(dim))
|
|
if out_format == "channels_last":
|
|
layers.append(to_channels_last())
|
|
elif norm_layer == "LN":
|
|
if in_format == "channels_first":
|
|
layers.append(to_channels_last())
|
|
layers.append(nn.LayerNorm(dim, eps=eps))
|
|
if out_format == "channels_first":
|
|
layers.append(to_channels_first())
|
|
else:
|
|
raise NotImplementedError(f"build_norm_layer does not support {norm_layer}")
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
class to_channels_first(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x.permute(0, 3, 1, 2)
|
|
|
|
|
|
class to_channels_last(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x.permute(0, 2, 3, 1)
|
|
|
|
|
|
|
|
|
|
_class_labels_TR_sorted = (
|
|
"Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, "
|
|
"BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, "
|
|
"CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, "
|
|
"Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, "
|
|
"Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, "
|
|
"Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, "
|
|
"KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, "
|
|
"Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, "
|
|
"OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, "
|
|
"RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, "
|
|
"ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, "
|
|
"Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, "
|
|
"TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, "
|
|
"UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht"
|
|
)
|
|
class_labels_TR_sorted = _class_labels_TR_sorted.split(", ")
|
|
|
|
|
|
|
|
|
|
config = Config()
|
|
|
|
|
|
def build_backbone(bb_name, pretrained=True, params_settings=""):
|
|
if bb_name == "vgg16":
|
|
bb_net = list(
|
|
vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children()
|
|
)[0]
|
|
bb = nn.Sequential(
|
|
OrderedDict(
|
|
{
|
|
"conv1": bb_net[:4],
|
|
"conv2": bb_net[4:9],
|
|
"conv3": bb_net[9:16],
|
|
"conv4": bb_net[16:23],
|
|
}
|
|
)
|
|
)
|
|
elif bb_name == "vgg16bn":
|
|
bb_net = list(
|
|
vgg16_bn(
|
|
pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None
|
|
).children()
|
|
)[0]
|
|
bb = nn.Sequential(
|
|
OrderedDict(
|
|
{
|
|
"conv1": bb_net[:6],
|
|
"conv2": bb_net[6:13],
|
|
"conv3": bb_net[13:23],
|
|
"conv4": bb_net[23:33],
|
|
}
|
|
)
|
|
)
|
|
elif bb_name == "resnet50":
|
|
bb_net = list(
|
|
resnet50(
|
|
pretrained=ResNet50_Weights.DEFAULT if pretrained else None
|
|
).children()
|
|
)
|
|
bb = nn.Sequential(
|
|
OrderedDict(
|
|
{
|
|
"conv1": nn.Sequential(*bb_net[0:3]),
|
|
"conv2": bb_net[4],
|
|
"conv3": bb_net[5],
|
|
"conv4": bb_net[6],
|
|
}
|
|
)
|
|
)
|
|
else:
|
|
bb = eval("{}({})".format(bb_name, params_settings))
|
|
if pretrained:
|
|
bb = load_weights(bb, bb_name)
|
|
return bb
|
|
|
|
|
|
def load_weights(model, model_name):
|
|
save_model = torch.load(config.weights[model_name], map_location="cpu")
|
|
model_dict = model.state_dict()
|
|
state_dict = {
|
|
k: v if v.size() == model_dict[k].size() else model_dict[k]
|
|
for k, v in save_model.items()
|
|
if k in model_dict.keys()
|
|
}
|
|
|
|
if not state_dict:
|
|
save_model_keys = list(save_model.keys())
|
|
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
|
|
state_dict = {
|
|
k: v if v.size() == model_dict[k].size() else model_dict[k]
|
|
for k, v in save_model[sub_item].items()
|
|
if k in model_dict.keys()
|
|
}
|
|
if not state_dict or not sub_item:
|
|
print(
|
|
"Weights are not successully loaded. Check the state dict of weights file."
|
|
)
|
|
return None
|
|
else:
|
|
print(
|
|
'Found correct weights in the "{}" item of loaded state_dict.'.format(
|
|
sub_item
|
|
)
|
|
)
|
|
model_dict.update(state_dict)
|
|
model.load_state_dict(model_dict)
|
|
return model
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicDecBlk(nn.Module):
|
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
|
super(BasicDecBlk, self).__init__()
|
|
inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64
|
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
|
self.relu_in = nn.ReLU(inplace=True)
|
|
if config.dec_att == "ASPP":
|
|
self.dec_att = ASPP(in_channels=inter_channels)
|
|
elif config.dec_att == "ASPPDeformable":
|
|
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
|
self.bn_in = (
|
|
nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
self.bn_out = (
|
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_in(x)
|
|
x = self.bn_in(x)
|
|
x = self.relu_in(x)
|
|
if hasattr(self, "dec_att"):
|
|
x = self.dec_att(x)
|
|
x = self.conv_out(x)
|
|
x = self.bn_out(x)
|
|
return x
|
|
|
|
|
|
class ResBlk(nn.Module):
|
|
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
|
super(ResBlk, self).__init__()
|
|
if out_channels is None:
|
|
out_channels = in_channels
|
|
inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64
|
|
|
|
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
|
self.bn_in = (
|
|
nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
self.relu_in = nn.ReLU(inplace=True)
|
|
|
|
if config.dec_att == "ASPP":
|
|
self.dec_att = ASPP(in_channels=inter_channels)
|
|
elif config.dec_att == "ASPPDeformable":
|
|
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
|
|
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
|
self.bn_out = (
|
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
|
|
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
|
|
|
def forward(self, x):
|
|
_x = self.conv_resi(x)
|
|
x = self.conv_in(x)
|
|
x = self.bn_in(x)
|
|
x = self.relu_in(x)
|
|
if hasattr(self, "dec_att"):
|
|
x = self.dec_att(x)
|
|
x = self.conv_out(x)
|
|
x = self.bn_out(x)
|
|
return x + _x
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from functools import partial
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BasicLatBlk(nn.Module):
|
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
|
super(BasicLatBlk, self).__init__()
|
|
inter_channels = in_channels // 4 if config.dec_channels_inter == "adap" else 64
|
|
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _ASPPModule(nn.Module):
|
|
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
|
super(_ASPPModule, self).__init__()
|
|
self.atrous_conv = nn.Conv2d(
|
|
in_channels,
|
|
planes,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=False,
|
|
)
|
|
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.atrous_conv(x)
|
|
x = self.bn(x)
|
|
|
|
return self.relu(x)
|
|
|
|
|
|
class ASPP(nn.Module):
|
|
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
|
super(ASPP, self).__init__()
|
|
self.down_scale = 1
|
|
if out_channels is None:
|
|
out_channels = in_channels
|
|
self.in_channelster = 256 // self.down_scale
|
|
if output_stride == 16:
|
|
dilations = [1, 6, 12, 18]
|
|
elif output_stride == 8:
|
|
dilations = [1, 12, 24, 36]
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
self.aspp1 = _ASPPModule(
|
|
in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0]
|
|
)
|
|
self.aspp2 = _ASPPModule(
|
|
in_channels,
|
|
self.in_channelster,
|
|
3,
|
|
padding=dilations[1],
|
|
dilation=dilations[1],
|
|
)
|
|
self.aspp3 = _ASPPModule(
|
|
in_channels,
|
|
self.in_channelster,
|
|
3,
|
|
padding=dilations[2],
|
|
dilation=dilations[2],
|
|
)
|
|
self.aspp4 = _ASPPModule(
|
|
in_channels,
|
|
self.in_channelster,
|
|
3,
|
|
padding=dilations[3],
|
|
dilation=dilations[3],
|
|
)
|
|
|
|
self.global_avg_pool = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d((1, 1)),
|
|
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
|
nn.BatchNorm2d(self.in_channelster)
|
|
if config.batch_size > 1
|
|
else nn.Identity(),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
|
self.bn1 = (
|
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
x1 = self.aspp1(x)
|
|
x2 = self.aspp2(x)
|
|
x3 = self.aspp3(x)
|
|
x4 = self.aspp4(x)
|
|
x5 = self.global_avg_pool(x)
|
|
x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
|
|
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
return self.dropout(x)
|
|
|
|
|
|
|
|
class _ASPPModuleDeformable(nn.Module):
|
|
def __init__(self, in_channels, planes, kernel_size, padding):
|
|
super(_ASPPModuleDeformable, self).__init__()
|
|
self.atrous_conv = DeformableConv2d(
|
|
in_channels,
|
|
planes,
|
|
kernel_size=kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
bias=False,
|
|
)
|
|
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
|
self.relu = nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.atrous_conv(x)
|
|
x = self.bn(x)
|
|
|
|
return self.relu(x)
|
|
|
|
|
|
class ASPPDeformable(nn.Module):
|
|
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
|
super(ASPPDeformable, self).__init__()
|
|
self.down_scale = 1
|
|
if out_channels is None:
|
|
out_channels = in_channels
|
|
self.in_channelster = 256 // self.down_scale
|
|
|
|
self.aspp1 = _ASPPModuleDeformable(
|
|
in_channels, self.in_channelster, 1, padding=0
|
|
)
|
|
self.aspp_deforms = nn.ModuleList(
|
|
[
|
|
_ASPPModuleDeformable(
|
|
in_channels,
|
|
self.in_channelster,
|
|
conv_size,
|
|
padding=int(conv_size // 2),
|
|
)
|
|
for conv_size in parallel_block_sizes
|
|
]
|
|
)
|
|
|
|
self.global_avg_pool = nn.Sequential(
|
|
nn.AdaptiveAvgPool2d((1, 1)),
|
|
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
|
nn.BatchNorm2d(self.in_channelster)
|
|
if config.batch_size > 1
|
|
else nn.Identity(),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
self.conv1 = nn.Conv2d(
|
|
self.in_channelster * (2 + len(self.aspp_deforms)),
|
|
out_channels,
|
|
1,
|
|
bias=False,
|
|
)
|
|
self.bn1 = (
|
|
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
|
)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.dropout = nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
x1 = self.aspp1(x)
|
|
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
|
|
x5 = self.global_avg_pool(x)
|
|
x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
|
|
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
|
|
return self.dropout(x)
|
|
|
|
|
|
|
|
|
|
|
|
class RefinerPVTInChannels4(nn.Module):
|
|
def __init__(self, in_channels=3 + 1):
|
|
super(RefinerPVTInChannels4, self).__init__()
|
|
self.config = Config()
|
|
self.epoch = 1
|
|
self.bb = build_backbone(self.config.bb, params_settings="in_channels=4")
|
|
|
|
lateral_channels_in_collection = {
|
|
"vgg16": [512, 256, 128, 64],
|
|
"vgg16bn": [512, 256, 128, 64],
|
|
"resnet50": [1024, 512, 256, 64],
|
|
"pvt_v2_b2": [512, 320, 128, 64],
|
|
"pvt_v2_b5": [512, 320, 128, 64],
|
|
"swin_v1_b": [1024, 512, 256, 128],
|
|
"swin_v1_l": [1536, 768, 384, 192],
|
|
}
|
|
channels = lateral_channels_in_collection[self.config.bb]
|
|
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
|
|
|
self.decoder = Decoder(channels)
|
|
|
|
if 0:
|
|
for key, value in self.named_parameters():
|
|
if "bb." in key:
|
|
value.requires_grad = False
|
|
|
|
def forward(self, x):
|
|
if isinstance(x, list):
|
|
x = torch.cat(x, dim=1)
|
|
|
|
if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]:
|
|
x1 = self.bb.conv1(x)
|
|
x2 = self.bb.conv2(x1)
|
|
x3 = self.bb.conv3(x2)
|
|
x4 = self.bb.conv4(x3)
|
|
else:
|
|
x1, x2, x3, x4 = self.bb(x)
|
|
|
|
x4 = self.squeeze_module(x4)
|
|
|
|
|
|
|
|
features = [x, x1, x2, x3, x4]
|
|
scaled_preds = self.decoder(features)
|
|
|
|
return scaled_preds
|
|
|
|
|
|
class Refiner(nn.Module):
|
|
def __init__(self, in_channels=3 + 1):
|
|
super(Refiner, self).__init__()
|
|
self.config = Config()
|
|
self.epoch = 1
|
|
self.stem_layer = StemLayer(
|
|
in_channels=in_channels,
|
|
inter_channels=48,
|
|
out_channels=3,
|
|
norm_layer="BN" if self.config.batch_size > 1 else "LN",
|
|
)
|
|
self.bb = build_backbone(self.config.bb)
|
|
|
|
lateral_channels_in_collection = {
|
|
"vgg16": [512, 256, 128, 64],
|
|
"vgg16bn": [512, 256, 128, 64],
|
|
"resnet50": [1024, 512, 256, 64],
|
|
"pvt_v2_b2": [512, 320, 128, 64],
|
|
"pvt_v2_b5": [512, 320, 128, 64],
|
|
"swin_v1_b": [1024, 512, 256, 128],
|
|
"swin_v1_l": [1536, 768, 384, 192],
|
|
}
|
|
channels = lateral_channels_in_collection[self.config.bb]
|
|
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
|
|
|
self.decoder = Decoder(channels)
|
|
|
|
if 0:
|
|
for key, value in self.named_parameters():
|
|
if "bb." in key:
|
|
value.requires_grad = False
|
|
|
|
def forward(self, x):
|
|
if isinstance(x, list):
|
|
x = torch.cat(x, dim=1)
|
|
x = self.stem_layer(x)
|
|
|
|
if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]:
|
|
x1 = self.bb.conv1(x)
|
|
x2 = self.bb.conv2(x1)
|
|
x3 = self.bb.conv3(x2)
|
|
x4 = self.bb.conv4(x3)
|
|
else:
|
|
x1, x2, x3, x4 = self.bb(x)
|
|
|
|
x4 = self.squeeze_module(x4)
|
|
|
|
|
|
|
|
features = [x, x1, x2, x3, x4]
|
|
scaled_preds = self.decoder(features)
|
|
|
|
return scaled_preds
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self, channels):
|
|
super(Decoder, self).__init__()
|
|
self.config = Config()
|
|
DecoderBlock = eval("BasicDecBlk")
|
|
LateralBlock = eval("BasicLatBlk")
|
|
|
|
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
|
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
|
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
|
self.decoder_block1 = DecoderBlock(channels[3], channels[3] // 2)
|
|
|
|
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
|
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
|
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
|
|
|
if self.config.ms_supervision:
|
|
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
|
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
|
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
|
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3] // 2, 1, 1, 1, 0))
|
|
|
|
def forward(self, features):
|
|
x, x1, x2, x3, x4 = features
|
|
outs = []
|
|
p4 = self.decoder_block4(x4)
|
|
_p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True)
|
|
_p3 = _p4 + self.lateral_block4(x3)
|
|
|
|
p3 = self.decoder_block3(_p3)
|
|
_p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True)
|
|
_p2 = _p3 + self.lateral_block3(x2)
|
|
|
|
p2 = self.decoder_block2(_p2)
|
|
_p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True)
|
|
_p1 = _p2 + self.lateral_block2(x1)
|
|
|
|
_p1 = self.decoder_block1(_p1)
|
|
_p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True)
|
|
p1_out = self.conv_out1(_p1)
|
|
|
|
if self.config.ms_supervision:
|
|
outs.append(self.conv_ms_spvn_4(p4))
|
|
outs.append(self.conv_ms_spvn_3(p3))
|
|
outs.append(self.conv_ms_spvn_2(p2))
|
|
outs.append(p1_out)
|
|
return outs
|
|
|
|
|
|
class RefUNet(nn.Module):
|
|
|
|
def __init__(self, in_channels=3 + 1):
|
|
super(RefUNet, self).__init__()
|
|
self.encoder_1 = nn.Sequential(
|
|
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
|
nn.Conv2d(64, 64, 3, 1, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
self.encoder_2 = nn.Sequential(
|
|
nn.MaxPool2d(2, 2, ceil_mode=True),
|
|
nn.Conv2d(64, 64, 3, 1, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
self.encoder_3 = nn.Sequential(
|
|
nn.MaxPool2d(2, 2, ceil_mode=True),
|
|
nn.Conv2d(64, 64, 3, 1, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
self.encoder_4 = nn.Sequential(
|
|
nn.MaxPool2d(2, 2, ceil_mode=True),
|
|
nn.Conv2d(64, 64, 3, 1, 1),
|
|
nn.BatchNorm2d(64),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
|
|
|
self.decoder_5 = nn.Sequential(
|
|
nn.Conv2d(64, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.decoder_4 = nn.Sequential(
|
|
nn.Conv2d(128, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.decoder_3 = nn.Sequential(
|
|
nn.Conv2d(128, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.decoder_2 = nn.Sequential(
|
|
nn.Conv2d(128, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.decoder_1 = nn.Sequential(
|
|
nn.Conv2d(128, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(inplace=True)
|
|
)
|
|
|
|
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
|
|
|
self.upscore2 = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
|
|
|
|
def forward(self, x):
|
|
outs = []
|
|
if isinstance(x, list):
|
|
x = torch.cat(x, dim=1)
|
|
hx = x
|
|
|
|
hx1 = self.encoder_1(hx)
|
|
hx2 = self.encoder_2(hx1)
|
|
hx3 = self.encoder_3(hx2)
|
|
hx4 = self.encoder_4(hx3)
|
|
|
|
hx = self.decoder_5(self.pool4(hx4))
|
|
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
|
|
|
d4 = self.decoder_4(hx)
|
|
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
|
|
|
d3 = self.decoder_3(hx)
|
|
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
|
|
|
d2 = self.decoder_2(hx)
|
|
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
|
|
|
d1 = self.decoder_1(hx)
|
|
|
|
x = self.conv_d0(d1)
|
|
outs.append(x)
|
|
return outs
|
|
|
|
|
|
|
|
|
|
|
|
class StemLayer(nn.Module):
|
|
r"""Stem layer of InternImage
|
|
Args:
|
|
in_channels (int): number of input channels
|
|
out_channels (int): number of output channels
|
|
act_layer (str): activation layer
|
|
norm_layer (str): normalization layer
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels=3 + 1,
|
|
inter_channels=48,
|
|
out_channels=96,
|
|
act_layer="GELU",
|
|
norm_layer="BN",
|
|
):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels, inter_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
self.norm1 = build_norm_layer(
|
|
inter_channels, norm_layer, "channels_first", "channels_first"
|
|
)
|
|
self.act = build_act_layer(act_layer)
|
|
self.conv2 = nn.Conv2d(
|
|
inter_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
self.norm2 = build_norm_layer(
|
|
out_channels, norm_layer, "channels_first", "channels_first"
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = self.norm1(x)
|
|
x = self.act(x)
|
|
x = self.conv2(x)
|
|
x = self.norm2(x)
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class BiRefNetConfig(PretrainedConfig):
|
|
model_type = "SegformerForSemanticSegmentation"
|
|
|
|
def __init__(self, bb_pretrained=False, **kwargs):
|
|
self.bb_pretrained = bb_pretrained
|
|
super().__init__(**kwargs)
|
|
|
|
|
|
class BiRefNet(PreTrainedModel):
|
|
config_class = BiRefNetConfig
|
|
|
|
def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
|
|
super(BiRefNet, self).__init__(config)
|
|
print(1)
|
|
bb_pretrained = config.bb_pretrained
|
|
self.config = Config()
|
|
self.epoch = 1
|
|
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
|
|
|
channels = self.config.lateral_channels_in_collection
|
|
|
|
if self.config.auxiliary_classification:
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.cls_head = nn.Sequential(
|
|
nn.Linear(channels[0], len(class_labels_TR_sorted))
|
|
)
|
|
|
|
if self.config.squeeze_block:
|
|
self.squeeze_module = nn.Sequential(
|
|
*[
|
|
eval(self.config.squeeze_block.split("_x")[0])(
|
|
channels[0] + sum(self.config.cxt), channels[0]
|
|
)
|
|
for _ in range(eval(self.config.squeeze_block.split("_x")[1]))
|
|
]
|
|
)
|
|
|
|
self.decoder = Decoder(channels)
|
|
|
|
if self.config.ender:
|
|
self.dec_end = nn.Sequential(
|
|
nn.Conv2d(1, 16, 3, 1, 1),
|
|
nn.Conv2d(16, 1, 3, 1, 1),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
|
|
if self.config.refine:
|
|
if self.config.refine == "itself":
|
|
self.stem_layer = StemLayer(
|
|
in_channels=3 + 1,
|
|
inter_channels=48,
|
|
out_channels=3,
|
|
norm_layer="BN" if self.config.batch_size > 1 else "LN",
|
|
)
|
|
else:
|
|
self.refiner = eval(
|
|
"{}({})".format(self.config.refine, "in_channels=3+1")
|
|
)
|
|
|
|
if self.config.freeze_bb:
|
|
|
|
print(self.named_parameters())
|
|
for key, value in self.named_parameters():
|
|
if "bb." in key and "refiner." not in key:
|
|
value.requires_grad = False
|
|
|
|
def forward_enc(self, x):
|
|
if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]:
|
|
x1 = self.bb.conv1(x)
|
|
x2 = self.bb.conv2(x1)
|
|
x3 = self.bb.conv3(x2)
|
|
x4 = self.bb.conv4(x3)
|
|
else:
|
|
x1, x2, x3, x4 = self.bb(x)
|
|
if self.config.mul_scl_ipt == "cat":
|
|
B, C, H, W = x.shape
|
|
x1_, x2_, x3_, x4_ = self.bb(
|
|
F.interpolate(
|
|
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True
|
|
)
|
|
)
|
|
x1 = torch.cat(
|
|
[
|
|
x1,
|
|
F.interpolate(
|
|
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
],
|
|
dim=1,
|
|
)
|
|
x2 = torch.cat(
|
|
[
|
|
x2,
|
|
F.interpolate(
|
|
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
],
|
|
dim=1,
|
|
)
|
|
x3 = torch.cat(
|
|
[
|
|
x3,
|
|
F.interpolate(
|
|
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
],
|
|
dim=1,
|
|
)
|
|
x4 = torch.cat(
|
|
[
|
|
x4,
|
|
F.interpolate(
|
|
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
],
|
|
dim=1,
|
|
)
|
|
elif self.config.mul_scl_ipt == "add":
|
|
B, C, H, W = x.shape
|
|
x1_, x2_, x3_, x4_ = self.bb(
|
|
F.interpolate(
|
|
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True
|
|
)
|
|
)
|
|
x1 = x1 + F.interpolate(
|
|
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
x2 = x2 + F.interpolate(
|
|
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
x3 = x3 + F.interpolate(
|
|
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
x4 = x4 + F.interpolate(
|
|
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
class_preds = (
|
|
self.cls_head(self.avgpool(x4).view(x4.shape[0], -1))
|
|
if self.training and self.config.auxiliary_classification
|
|
else None
|
|
)
|
|
if self.config.cxt:
|
|
x4 = torch.cat(
|
|
(
|
|
*[
|
|
F.interpolate(
|
|
x1, size=x4.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
F.interpolate(
|
|
x2, size=x4.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
F.interpolate(
|
|
x3, size=x4.shape[2:], mode="bilinear", align_corners=True
|
|
),
|
|
][-len(self.config.cxt) :],
|
|
x4,
|
|
),
|
|
dim=1,
|
|
)
|
|
return (x1, x2, x3, x4), class_preds
|
|
|
|
def forward_ori(self, x):
|
|
|
|
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
|
if self.config.squeeze_block:
|
|
x4 = self.squeeze_module(x4)
|
|
|
|
features = [x, x1, x2, x3, x4]
|
|
|
|
|
|
scaled_preds = self.decoder(features)
|
|
return scaled_preds, class_preds
|
|
|
|
def forward(self, x):
|
|
scaled_preds, class_preds = self.forward_ori(x)
|
|
class_preds_lst = [class_preds]
|
|
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(self, channels):
|
|
super(Decoder, self).__init__()
|
|
self.config = Config()
|
|
DecoderBlock = eval(self.config.dec_blk)
|
|
LateralBlock = eval(self.config.lat_blk)
|
|
|
|
if self.config.dec_ipt:
|
|
self.split = self.config.dec_ipt_split
|
|
N_dec_ipt = 64
|
|
DBlock = SimpleConvs
|
|
ic = 64
|
|
ipt_cha_opt = 1
|
|
self.ipt_blk5 = DBlock(
|
|
2**10 * 3 if self.split else 3,
|
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt],
|
|
inter_channels=ic,
|
|
)
|
|
self.ipt_blk4 = DBlock(
|
|
2**8 * 3 if self.split else 3,
|
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt],
|
|
inter_channels=ic,
|
|
)
|
|
self.ipt_blk3 = DBlock(
|
|
2**6 * 3 if self.split else 3,
|
|
[N_dec_ipt, channels[1] // 8][ipt_cha_opt],
|
|
inter_channels=ic,
|
|
)
|
|
self.ipt_blk2 = DBlock(
|
|
2**4 * 3 if self.split else 3,
|
|
[N_dec_ipt, channels[2] // 8][ipt_cha_opt],
|
|
inter_channels=ic,
|
|
)
|
|
self.ipt_blk1 = DBlock(
|
|
2**0 * 3 if self.split else 3,
|
|
[N_dec_ipt, channels[3] // 8][ipt_cha_opt],
|
|
inter_channels=ic,
|
|
)
|
|
else:
|
|
self.split = None
|
|
|
|
self.decoder_block4 = DecoderBlock(
|
|
channels[0]
|
|
+ (
|
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0
|
|
),
|
|
channels[1],
|
|
)
|
|
self.decoder_block3 = DecoderBlock(
|
|
channels[1]
|
|
+ (
|
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0
|
|
),
|
|
channels[2],
|
|
)
|
|
self.decoder_block2 = DecoderBlock(
|
|
channels[2]
|
|
+ (
|
|
[N_dec_ipt, channels[1] // 8][ipt_cha_opt] if self.config.dec_ipt else 0
|
|
),
|
|
channels[3],
|
|
)
|
|
self.decoder_block1 = DecoderBlock(
|
|
channels[3]
|
|
+ (
|
|
[N_dec_ipt, channels[2] // 8][ipt_cha_opt] if self.config.dec_ipt else 0
|
|
),
|
|
channels[3] // 2,
|
|
)
|
|
self.conv_out1 = nn.Sequential(
|
|
nn.Conv2d(
|
|
channels[3] // 2
|
|
+ (
|
|
[N_dec_ipt, channels[3] // 8][ipt_cha_opt]
|
|
if self.config.dec_ipt
|
|
else 0
|
|
),
|
|
1,
|
|
1,
|
|
1,
|
|
0,
|
|
)
|
|
)
|
|
|
|
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
|
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
|
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
|
|
|
if self.config.ms_supervision:
|
|
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
|
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
|
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
|
|
|
if self.config.out_ref:
|
|
_N = 16
|
|
self.gdt_convs_4 = nn.Sequential(
|
|
nn.Conv2d(channels[1], _N, 3, 1, 1),
|
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
self.gdt_convs_3 = nn.Sequential(
|
|
nn.Conv2d(channels[2], _N, 3, 1, 1),
|
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
self.gdt_convs_2 = nn.Sequential(
|
|
nn.Conv2d(channels[3], _N, 3, 1, 1),
|
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(),
|
|
nn.ReLU(inplace=True),
|
|
)
|
|
|
|
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
|
|
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
|
|
|
def get_patches_batch(self, x, p):
|
|
_size_h, _size_w = p.shape[2:]
|
|
patches_batch = []
|
|
for idx in range(x.shape[0]):
|
|
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
|
patches_x = []
|
|
for column_x in columns_x:
|
|
patches_x += [
|
|
p.unsqueeze(0)
|
|
for p in torch.split(
|
|
column_x, split_size_or_sections=_size_h, dim=-2
|
|
)
|
|
]
|
|
patch_sample = torch.cat(patches_x, dim=1)
|
|
patches_batch.append(patch_sample)
|
|
return torch.cat(patches_batch, dim=0)
|
|
|
|
def forward(self, features):
|
|
if self.training and self.config.out_ref:
|
|
outs_gdt_pred = []
|
|
outs_gdt_label = []
|
|
x, x1, x2, x3, x4, gdt_gt = features
|
|
else:
|
|
x, x1, x2, x3, x4 = features
|
|
outs = []
|
|
|
|
if self.config.dec_ipt:
|
|
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
|
x4 = torch.cat(
|
|
(
|
|
x4,
|
|
self.ipt_blk5(
|
|
F.interpolate(
|
|
patches_batch,
|
|
size=x4.shape[2:],
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
p4 = self.decoder_block4(x4)
|
|
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
|
if self.config.out_ref:
|
|
p4_gdt = self.gdt_convs_4(p4)
|
|
if self.training:
|
|
|
|
m4_dia = m4
|
|
gdt_label_main_4 = gdt_gt * F.interpolate(
|
|
m4_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
outs_gdt_label.append(gdt_label_main_4)
|
|
|
|
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
|
outs_gdt_pred.append(gdt_pred_4)
|
|
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
|
|
|
p4 = p4 * gdt_attn_4
|
|
_p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True)
|
|
_p3 = _p4 + self.lateral_block4(x3)
|
|
|
|
if self.config.dec_ipt:
|
|
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
|
_p3 = torch.cat(
|
|
(
|
|
_p3,
|
|
self.ipt_blk4(
|
|
F.interpolate(
|
|
patches_batch,
|
|
size=x3.shape[2:],
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
p3 = self.decoder_block3(_p3)
|
|
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
|
if self.config.out_ref:
|
|
p3_gdt = self.gdt_convs_3(p3)
|
|
if self.training:
|
|
|
|
|
|
|
|
m3_dia = m3
|
|
gdt_label_main_3 = gdt_gt * F.interpolate(
|
|
m3_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
outs_gdt_label.append(gdt_label_main_3)
|
|
|
|
|
|
|
|
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
|
|
outs_gdt_pred.append(gdt_pred_3)
|
|
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
|
|
|
|
|
|
p3 = p3 * gdt_attn_3
|
|
_p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True)
|
|
_p2 = _p3 + self.lateral_block3(x2)
|
|
|
|
if self.config.dec_ipt:
|
|
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
|
_p2 = torch.cat(
|
|
(
|
|
_p2,
|
|
self.ipt_blk3(
|
|
F.interpolate(
|
|
patches_batch,
|
|
size=x2.shape[2:],
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
p2 = self.decoder_block2(_p2)
|
|
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
|
if self.config.out_ref:
|
|
p2_gdt = self.gdt_convs_2(p2)
|
|
if self.training:
|
|
|
|
m2_dia = m2
|
|
gdt_label_main_2 = gdt_gt * F.interpolate(
|
|
m2_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True
|
|
)
|
|
outs_gdt_label.append(gdt_label_main_2)
|
|
|
|
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
|
|
outs_gdt_pred.append(gdt_pred_2)
|
|
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
|
|
|
|
p2 = p2 * gdt_attn_2
|
|
_p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True)
|
|
_p1 = _p2 + self.lateral_block2(x1)
|
|
|
|
if self.config.dec_ipt:
|
|
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
|
_p1 = torch.cat(
|
|
(
|
|
_p1,
|
|
self.ipt_blk2(
|
|
F.interpolate(
|
|
patches_batch,
|
|
size=x1.shape[2:],
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
_p1 = self.decoder_block1(_p1)
|
|
_p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True)
|
|
|
|
if self.config.dec_ipt:
|
|
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
|
_p1 = torch.cat(
|
|
(
|
|
_p1,
|
|
self.ipt_blk1(
|
|
F.interpolate(
|
|
patches_batch,
|
|
size=x.shape[2:],
|
|
mode="bilinear",
|
|
align_corners=True,
|
|
)
|
|
),
|
|
),
|
|
1,
|
|
)
|
|
p1_out = self.conv_out1(_p1)
|
|
|
|
if self.config.ms_supervision:
|
|
outs.append(m4)
|
|
outs.append(m3)
|
|
outs.append(m2)
|
|
outs.append(p1_out)
|
|
return (
|
|
outs
|
|
if not (self.config.out_ref and self.training)
|
|
else ([outs_gdt_pred, outs_gdt_label], outs)
|
|
)
|
|
|
|
|
|
class SimpleConvs(nn.Module):
|
|
def __init__(self, in_channels: int, out_channels: int, inter_channels=64) -> None:
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
|
|
|
def forward(self, x):
|
|
return self.conv_out(self.conv1(x))
|
|
|
|
|
|
def create_briarmbg2_session():
|
|
birefnet = BiRefNet.from_pretrained("briaai/RMBG-2.0")
|
|
return birefnet
|
|
|
|
|
|
def briarmbg2_process(device, bgr_np_image, session, only_mask=False):
|
|
from torchvision import transforms
|
|
from PIL import Image
|
|
|
|
transform_image = transforms.Compose(
|
|
[
|
|
transforms.Resize((1024, 1024)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
]
|
|
)
|
|
|
|
image = Image.fromarray(bgr_np_image)
|
|
image_size = image.size
|
|
input_images = transform_image(image).unsqueeze(0)
|
|
input_images = input_images.to(device)
|
|
|
|
|
|
preds = session(input_images)[-1].sigmoid().cpu()
|
|
pred = preds[0].squeeze()
|
|
pred_pil = transforms.ToPILImage()(pred)
|
|
mask = pred_pil.resize(image_size)
|
|
|
|
if only_mask:
|
|
return np.array(mask)
|
|
|
|
image.putalpha(mask)
|
|
return np.array(image)
|
|
|