Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------------ | |
| # Adapted from https://github.com/lonePatient/BERT-NER-Pytorch | |
| # Original licence: Copyright (c) 2020 Weitang Liu, under the MIT License. | |
| # ------------------------------------------------------------------------------ | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| from mmocr.models.builder import build_activation_layer | |
| class BertModel(nn.Module): | |
| """Implement Bert model for named entity recognition task. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch | |
| Args: | |
| num_hidden_layers (int): The number of hidden layers. | |
| initializer_range (float): | |
| vocab_size (int): Number of words supported. | |
| hidden_size (int): Hidden size. | |
| max_position_embeddings (int): Max positionsembedding size. | |
| type_vocab_size (int): The size of type_vocab. | |
| layer_norm_eps (float): eps. | |
| hidden_dropout_prob (float): The dropout probability of hidden layer. | |
| output_attentions (bool): Whether use the attentions in output | |
| output_hidden_states (bool): Whether use the hidden_states in output. | |
| num_attention_heads (int): The number of attention heads. | |
| attention_probs_dropout_prob (float): The dropout probability | |
| for the attention probabilities normalized from | |
| the attention scores. | |
| intermediate_size (int): The size of intermediate layer. | |
| hidden_act_cfg (str): hidden layer activation | |
| """ | |
| def __init__(self, | |
| num_hidden_layers=12, | |
| initializer_range=0.02, | |
| vocab_size=21128, | |
| hidden_size=768, | |
| max_position_embeddings=128, | |
| type_vocab_size=2, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| num_attention_heads=12, | |
| attention_probs_dropout_prob=0.1, | |
| intermediate_size=3072, | |
| hidden_act_cfg=dict(type='GeluNew')): | |
| super().__init__() | |
| self.embeddings = BertEmbeddings( | |
| vocab_size=vocab_size, | |
| hidden_size=hidden_size, | |
| max_position_embeddings=max_position_embeddings, | |
| type_vocab_size=type_vocab_size, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob) | |
| self.encoder = BertEncoder( | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| num_hidden_layers=num_hidden_layers, | |
| hidden_size=hidden_size, | |
| num_attention_heads=num_attention_heads, | |
| attention_probs_dropout_prob=attention_probs_dropout_prob, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob, | |
| intermediate_size=intermediate_size, | |
| hidden_act_cfg=hidden_act_cfg) | |
| self.pooler = BertPooler(hidden_size=hidden_size) | |
| self.num_hidden_layers = num_hidden_layers | |
| self.initializer_range = initializer_range | |
| self.init_weights() | |
| def _resize_token_embeddings(self, new_num_tokens): | |
| old_embeddings = self.embeddings.word_embeddings | |
| new_embeddings = self._get_resized_embeddings(old_embeddings, | |
| new_num_tokens) | |
| self.embeddings.word_embeddings = new_embeddings | |
| return self.embeddings.word_embeddings | |
| def forward(self, | |
| input_ids, | |
| attention_masks=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None): | |
| if attention_masks is None: | |
| attention_masks = torch.ones_like(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| attention_masks = attention_masks[:, None, None] | |
| attention_masks = attention_masks.to( | |
| dtype=next(self.parameters()).dtype) | |
| attention_masks = (1.0 - attention_masks) * -10000.0 | |
| if head_mask is not None: | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask[None, None, :, None, None] | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask[None, :, None, None] | |
| head_mask = head_mask.to(dtype=next(self.parameters()).dtype) | |
| else: | |
| head_mask = [None] * self.num_hidden_layers | |
| embedding_output = self.embeddings( | |
| input_ids, | |
| position_ids=position_ids, | |
| token_type_ids=token_type_ids) | |
| sequence_output, *encoder_outputs = self.encoder( | |
| embedding_output, attention_masks, head_mask=head_mask) | |
| # sequence_output = encoder_outputs[0] | |
| pooled_output = self.pooler(sequence_output) | |
| # add hidden_states and attentions if they are here | |
| # sequence_output, pooled_output, (hidden_states), (attentions) | |
| outputs = ( | |
| sequence_output, | |
| pooled_output, | |
| ) + tuple(encoder_outputs) | |
| return outputs | |
| def _init_weights(self, module): | |
| """Initialize the weights.""" | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| # Slightly different from the TF version which | |
| # uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.initializer_range) | |
| elif isinstance(module, torch.nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| def init_weights(self): | |
| """Initialize and prunes weights if needed.""" | |
| # Initialize weights | |
| self.apply(self._init_weights) | |
| class BertEmbeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| Args: | |
| vocab_size (int): Number of words supported. | |
| hidden_size (int): Hidden size. | |
| max_position_embeddings (int): Max positions embedding size. | |
| type_vocab_size (int): The size of type_vocab. | |
| layer_norm_eps (float): eps. | |
| hidden_dropout_prob (float): The dropout probability of hidden layer. | |
| """ | |
| def __init__(self, | |
| vocab_size=21128, | |
| hidden_size=768, | |
| max_position_embeddings=128, | |
| type_vocab_size=2, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding( | |
| vocab_size, hidden_size, padding_idx=0) | |
| self.position_embeddings = nn.Embedding(max_position_embeddings, | |
| hidden_size) | |
| self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with | |
| # TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
| self.dropout = nn.Dropout(hidden_dropout_prob) | |
| def forward(self, input_ids, token_type_ids=None, position_ids=None): | |
| seq_length = input_ids.size(1) | |
| if position_ids is None: | |
| position_ids = torch.arange( | |
| seq_length, dtype=torch.long, device=input_ids.device) | |
| position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| words_emb = self.word_embeddings(input_ids) | |
| position_emb = self.position_embeddings(position_ids) | |
| token_type_emb = self.token_type_embeddings(token_type_ids) | |
| embeddings = words_emb + position_emb + token_type_emb | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class BertEncoder(nn.Module): | |
| """The code is adapted from https://github.com/lonePatient/BERT-NER- | |
| Pytorch.""" | |
| def __init__(self, | |
| output_attentions=False, | |
| output_hidden_states=False, | |
| num_hidden_layers=12, | |
| hidden_size=768, | |
| num_attention_heads=12, | |
| attention_probs_dropout_prob=0.1, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1, | |
| intermediate_size=3072, | |
| hidden_act_cfg=dict(type='GeluNew')): | |
| super().__init__() | |
| self.output_attentions = output_attentions | |
| self.output_hidden_states = output_hidden_states | |
| self.layer = nn.ModuleList([ | |
| BertLayer( | |
| hidden_size=hidden_size, | |
| num_attention_heads=num_attention_heads, | |
| output_attentions=output_attentions, | |
| attention_probs_dropout_prob=attention_probs_dropout_prob, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob, | |
| intermediate_size=intermediate_size, | |
| hidden_act_cfg=hidden_act_cfg) | |
| for _ in range(num_hidden_layers) | |
| ]) | |
| def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
| all_hidden_states = () | |
| all_attentions = () | |
| for i, layer_module in enumerate(self.layer): | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states, ) | |
| layer_outputs = layer_module(hidden_states, attention_mask, | |
| head_mask[i]) | |
| hidden_states = layer_outputs[0] | |
| if self.output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1], ) | |
| # Add last layer | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states, ) | |
| outputs = (hidden_states, ) | |
| if self.output_hidden_states: | |
| outputs = outputs + (all_hidden_states, ) | |
| if self.output_attentions: | |
| outputs = outputs + (all_attentions, ) | |
| # last-layer hidden state, (all hidden states), (all attentions) | |
| return outputs | |
| class BertPooler(nn.Module): | |
| def __init__(self, hidden_size=768): | |
| super().__init__() | |
| self.dense = nn.Linear(hidden_size, hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| class BertLayer(nn.Module): | |
| """Bert layer. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| hidden_size=768, | |
| num_attention_heads=12, | |
| output_attentions=False, | |
| attention_probs_dropout_prob=0.1, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1, | |
| intermediate_size=3072, | |
| hidden_act_cfg=dict(type='GeluNew')): | |
| super().__init__() | |
| self.attention = BertAttention( | |
| hidden_size=hidden_size, | |
| num_attention_heads=num_attention_heads, | |
| output_attentions=output_attentions, | |
| attention_probs_dropout_prob=attention_probs_dropout_prob, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob) | |
| self.intermediate = BertIntermediate( | |
| hidden_size=hidden_size, | |
| intermediate_size=intermediate_size, | |
| hidden_act_cfg=hidden_act_cfg) | |
| self.output = BertOutput( | |
| intermediate_size=intermediate_size, | |
| hidden_size=hidden_size, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob) | |
| def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
| attention_outputs = self.attention(hidden_states, attention_mask, | |
| head_mask) | |
| attention_output = attention_outputs[0] | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| outputs = (layer_output, ) + attention_outputs[ | |
| 1:] # add attentions if we output them | |
| return outputs | |
| class BertSelfAttention(nn.Module): | |
| """Bert self attention module. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| hidden_size=768, | |
| num_attention_heads=12, | |
| output_attentions=False, | |
| attention_probs_dropout_prob=0.1): | |
| super().__init__() | |
| if hidden_size % num_attention_heads != 0: | |
| raise ValueError('The hidden size (%d) is not a multiple of' | |
| 'the number of attention heads (%d)' % | |
| (hidden_size, num_attention_heads)) | |
| self.output_attentions = output_attentions | |
| self.num_attention_heads = num_attention_heads | |
| self.att_head_size = int(hidden_size / num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.att_head_size | |
| self.query = nn.Linear(hidden_size, self.all_head_size) | |
| self.key = nn.Linear(hidden_size, self.all_head_size) | |
| self.value = nn.Linear(hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, | |
| self.att_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward(self, hidden_states, attention_mask=None, head_mask=None): | |
| mixed_query_layer = self.query(hidden_states) | |
| mixed_key_layer = self.key(hidden_states) | |
| mixed_value_layer = self.value(hidden_states) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| # Take the dot product between "query" and | |
| # "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, | |
| key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.att_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is precomputed for | |
| # all layers in BertModel forward() function. | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to. | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + ( | |
| self.all_head_size, ) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, | |
| attention_probs) if self.output_attentions else ( | |
| context_layer, ) | |
| return outputs | |
| class BertSelfOutput(nn.Module): | |
| """Bert self output. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| hidden_size=768, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1): | |
| super().__init__() | |
| self.dense = nn.Linear(hidden_size, hidden_size) | |
| self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
| self.dropout = nn.Dropout(hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class BertAttention(nn.Module): | |
| """Bert Attention module implementation. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| hidden_size=768, | |
| num_attention_heads=12, | |
| output_attentions=False, | |
| attention_probs_dropout_prob=0.1, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1): | |
| super().__init__() | |
| self.self = BertSelfAttention( | |
| hidden_size=hidden_size, | |
| num_attention_heads=num_attention_heads, | |
| output_attentions=output_attentions, | |
| attention_probs_dropout_prob=attention_probs_dropout_prob) | |
| self.output = BertSelfOutput( | |
| hidden_size=hidden_size, | |
| layer_norm_eps=layer_norm_eps, | |
| hidden_dropout_prob=hidden_dropout_prob) | |
| def forward(self, input_tensor, attention_mask=None, head_mask=None): | |
| self_outputs = self.self(input_tensor, attention_mask, head_mask) | |
| attention_output = self.output(self_outputs[0], input_tensor) | |
| outputs = (attention_output, | |
| ) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| class BertIntermediate(nn.Module): | |
| """Bert BertIntermediate module implementation. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| hidden_size=768, | |
| intermediate_size=3072, | |
| hidden_act_cfg=dict(type='GeluNew')): | |
| super().__init__() | |
| self.dense = nn.Linear(hidden_size, intermediate_size) | |
| self.intermediate_act_fn = build_activation_layer(hidden_act_cfg) | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| class BertOutput(nn.Module): | |
| """Bert output module. | |
| The code is adapted from https://github.com/lonePatient/BERT-NER-Pytorch. | |
| """ | |
| def __init__(self, | |
| intermediate_size=3072, | |
| hidden_size=768, | |
| layer_norm_eps=1e-12, | |
| hidden_dropout_prob=0.1): | |
| super().__init__() | |
| self.dense = nn.Linear(intermediate_size, hidden_size) | |
| self.LayerNorm = torch.nn.LayerNorm(hidden_size, eps=layer_norm_eps) | |
| self.dropout = nn.Dropout(hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |