File size: 12,029 Bytes
b5ce381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.loggers import WandbLogger
import numpy as np
from pytorch_lightning.utilities import rank_zero_only
from typing import Union
import pytorch_lightning as pl
import os
from sgm.util import exists, suppress_output, default
import torchvision
from PIL import Image
import torch
import wandb
import moviepy.editor as mpy
from einops import rearrange
import torchaudio
# import tempfile
# import cv2
# import scipy.io.wavfile as wav
# import ffmpeg


@suppress_output
def save_audio_video(
    video, audio=None, frame_rate=25, sample_rate=16000, save_path="temp.mp4", keep_intermediate=False
):
    """Save audio and video to a single file.
    video: (t, c, h, w)
    audio: (channels t)
    """

    # temp_filename = next(tempfile._get_candidate_names())
    # if save_path:
    #     save_path = save_path
    # else:
    #     save_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4"
    save_path = str(save_path)
    try:
        torchvision.io.write_video(
            "temp_video.mp4", rearrange(video.detach().cpu(), "t c h w -> t h w c").to(torch.uint8), frame_rate
        )
        video_clip = mpy.VideoFileClip("temp_video.mp4")
        if audio is not None:
            torchaudio.save("temp_audio.wav", audio.detach().cpu(), sample_rate)
            audio_clip = mpy.AudioFileClip("temp_audio.wav")
            video_clip = video_clip.set_audio(audio_clip)
        video_clip.write_videofile(save_path, fps=frame_rate, codec="libx264", audio_codec="aac", verbose=False)
        if not keep_intermediate:
            os.remove("temp_video.mp4")
            if audio is not None:
                os.remove("temp_audio.wav")
        return 1
    except Exception as e:
        print(e)
        print("Saving video to file failed")
        return 0


# def write_video_opencv(video, video_rate, video_path):
#     fourcc = cv2.VideoWriter_fourcc(*"mp4v")
#     out = cv2.VideoWriter(video_path, fourcc, video_rate, (video.shape[2], video.shape[3]), 0)
#     for frame in list(video):
#         frame = np.squeeze(frame)
#         out.write(np.squeeze(frame))
#     out.release()


# # Code mostly inherited from bulletin
# def save_av_sample(video, video_rate, audio=None, audio_rate=16_000, path=None):
#     # Save video sample in train dir for debugging
#     # video_save = 0.5 * video.detach().cpu().numpy() + 0.5
#     video_save = rearrange(video, "t c h w -> t h w c").detach().cpu().numpy()
#     temp_filename = next(tempfile._get_candidate_names())
#     if path:
#         video_path = path
#     else:
#         video_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4"
#     write_video_opencv((video_save).astype(np.uint8), video_rate, "/tmp/" + temp_filename + ".mp4")
#     audio_save = audio.detach().squeeze().cpu().numpy()
#     wav.write("/tmp/" + temp_filename + ".wav", audio_rate, audio_save)
#     try:
#         in1 = ffmpeg.input("/tmp/" + temp_filename + ".mp4")
#         in2 = ffmpeg.input("/tmp/" + temp_filename + ".wav")
#         out = ffmpeg.output(in1["v"], in2["a"], video_path, loglevel="panic").overwrite_output()
#         out.run(capture_stdout=True, capture_stderr=True)
#     except ffmpeg.Error as e:
#         print("stdout:", e.stdout.decode("utf8"))
#         print("stderr:", e.stderr.decode("utf8"))
#         raise e
#     return video_path


class VideoLogger(Callback):
    def __init__(
        self,
        batch_frequency,
        max_videos,
        clamp=True,
        increase_log_steps=True,
        rescale=True,
        disabled=False,
        log_on_batch_idx=False,
        log_first_step=False,
        log_videos_kwargs=None,
        log_before_first_step=False,
        enable_autocast=True,
        batch_frequency_val=None,
    ):
        super().__init__()
        self.enable_autocast = enable_autocast
        self.rescale = rescale
        self.batch_freq = batch_frequency
        self.max_videos = max_videos
        self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
        if not increase_log_steps:
            self.log_steps = [self.batch_freq]
        self.batch_freq_val = default(batch_frequency_val, self.batch_freq)
        self.log_steps_val = [2**n for n in range(int(np.log2(self.batch_freq_val)) + 1)]
        if not increase_log_steps:
            self.log_steps_val = [self.batch_freq_val]
        self.clamp = clamp
        self.disabled = disabled
        self.log_on_batch_idx = log_on_batch_idx
        self.log_videos_kwargs = log_videos_kwargs if log_videos_kwargs else {}
        self.log_first_step = log_first_step
        self.log_before_first_step = log_before_first_step

    @rank_zero_only
    def log_local(
        self,
        save_dir,
        split,
        log_elements,
        raw_audio,
        global_step,
        current_epoch,
        batch_idx,
        pl_module: Union[None, pl.LightningModule] = None,
    ):
        root = os.path.join(save_dir, "videos", split)
        for k in log_elements:
            element = log_elements[k]
            if len(element.shape) == 4:
                grid = torchvision.utils.make_grid(element, nrow=4)
                if self.rescale:
                    grid = (grid + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
                grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
                grid = grid.numpy()
                grid = (grid * 255).astype(np.uint8)
                filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
                path = os.path.join(root, filename)
                os.makedirs(os.path.split(path)[0], exist_ok=True)
                img = Image.fromarray(grid)
                img.save(path)
                if exists(pl_module):
                    assert isinstance(
                        pl_module.logger, WandbLogger
                    ), "logger_log_image only supports WandbLogger currently"
                    pl_module.logger.log_image(
                        key=f"{split}/{k}",
                        images=[
                            img,
                        ],
                        step=pl_module.global_step,
                    )
            elif len(element.shape) == 5:
                video = element
                if self.rescale:
                    video = (video + 1.0) / 2.0  # -1,1 -> 0,1; c,h,w
                video = video * 255.0
                video = video.permute(0, 2, 1, 3, 4).cpu().detach().to(torch.uint8)  # b,t,c,h,w
                for i in range(video.shape[0]):
                    filename = "{}_gs-{:06}_e-{:06}_b-{:06}_{}.mp4".format(k, global_step, current_epoch, batch_idx, i)
                    path = os.path.join(root, filename)
                    os.makedirs(os.path.split(path)[0], exist_ok=True)
                    log_audio = raw_audio[i] if raw_audio is not None else None
                    success = save_audio_video(
                        video[i],
                        audio=log_audio.unsqueeze(0) if log_audio is not None else None,
                        frame_rate=25,
                        sample_rate=16000,
                        save_path=path,
                        keep_intermediate=False,
                    )

                    # video_path = save_av_sample(video[i], 25, audio=raw_audio, audio_rate=16000, path=None)
                    if exists(pl_module):
                        assert isinstance(
                            pl_module.logger, WandbLogger
                        ), "logger_log_image only supports WandbLogger currently"
                        pl_module.logger.experiment.log(
                            {
                                f"{split}/{k}": wandb.Video(
                                    path if success else video,
                                    # caption=f"diffused videos w {n_frames} frames (condition left, generated right)",
                                    fps=25,
                                    format="mp4",
                                )
                            },
                        )

    @rank_zero_only
    def log_video(self, pl_module, batch, batch_idx, split="train"):
        check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
        # print(f"check_idx: {check_idx}", f"split: {split}")
        if (
            self.check_frequency(check_idx, split=split)
            and hasattr(pl_module, "log_videos")  # batch_idx % self.batch_freq == 0
            and callable(pl_module.log_videos)
            and
            # batch_idx > 5 and
            self.max_videos > 0
        ):
            logger = type(pl_module.logger)
            is_train = pl_module.training
            if is_train:
                pl_module.eval()

            gpu_autocast_kwargs = {
                "enabled": self.enable_autocast,  # torch.is_autocast_enabled(),
                "dtype": torch.get_autocast_gpu_dtype(),
                "cache_enabled": torch.is_autocast_cache_enabled(),
            }
            with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
                videos = pl_module.log_videos(batch, split=split, **self.log_videos_kwargs)

            for k in videos:
                N = min(videos[k].shape[0], self.max_videos)
                videos[k] = videos[k][:N]
                if isinstance(videos[k], torch.Tensor):
                    videos[k] = videos[k].detach().float().cpu()
                    if self.clamp:
                        videos[k] = torch.clamp(videos[k], -1.0, 1.0)

            raw_audio = batch.get("raw_audio", None)

            self.log_local(
                pl_module.logger.save_dir,
                split,
                videos,
                raw_audio,
                pl_module.global_step,
                pl_module.current_epoch,
                batch_idx,
                pl_module=pl_module if isinstance(pl_module.logger, WandbLogger) else None,
            )

            if is_train:
                pl_module.train()

    def check_frequency(self, check_idx, split="train"):
        if split == "val":
            if check_idx:
                check_idx -= 1
            if ((check_idx % self.batch_freq_val) == 0 or (check_idx in self.log_steps_val)) and (
                check_idx > 0 or self.log_first_step
            ):
                try:
                    self.log_steps_val.pop(0)
                except IndexError as e:
                    print(e)
                    pass
                return True
            return False
        if check_idx:
            check_idx -= 1
        if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
            check_idx > 0 or self.log_first_step
        ):
            try:
                self.log_steps.pop(0)
            except IndexError as e:
                print(e)
                pass
            return True
        return False

    @rank_zero_only
    def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
        if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
            self.log_video(pl_module, batch, batch_idx, split="train")

    @rank_zero_only
    def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
        if self.log_before_first_step and pl_module.global_step == 0:
            print(f"{self.__class__.__name__}: logging before training")
            self.log_video(pl_module, batch, batch_idx, split="train")

    @rank_zero_only
    def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs):
        if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
            self.log_video(pl_module, batch, batch_idx, split="val")
        if hasattr(pl_module, "calibrate_grad_norm"):
            if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
                self.log_gradients(trainer, pl_module, batch_idx=batch_idx)