Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,029 Bytes
b5ce381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.loggers import WandbLogger
import numpy as np
from pytorch_lightning.utilities import rank_zero_only
from typing import Union
import pytorch_lightning as pl
import os
from sgm.util import exists, suppress_output, default
import torchvision
from PIL import Image
import torch
import wandb
import moviepy.editor as mpy
from einops import rearrange
import torchaudio
# import tempfile
# import cv2
# import scipy.io.wavfile as wav
# import ffmpeg
@suppress_output
def save_audio_video(
video, audio=None, frame_rate=25, sample_rate=16000, save_path="temp.mp4", keep_intermediate=False
):
"""Save audio and video to a single file.
video: (t, c, h, w)
audio: (channels t)
"""
# temp_filename = next(tempfile._get_candidate_names())
# if save_path:
# save_path = save_path
# else:
# save_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4"
save_path = str(save_path)
try:
torchvision.io.write_video(
"temp_video.mp4", rearrange(video.detach().cpu(), "t c h w -> t h w c").to(torch.uint8), frame_rate
)
video_clip = mpy.VideoFileClip("temp_video.mp4")
if audio is not None:
torchaudio.save("temp_audio.wav", audio.detach().cpu(), sample_rate)
audio_clip = mpy.AudioFileClip("temp_audio.wav")
video_clip = video_clip.set_audio(audio_clip)
video_clip.write_videofile(save_path, fps=frame_rate, codec="libx264", audio_codec="aac", verbose=False)
if not keep_intermediate:
os.remove("temp_video.mp4")
if audio is not None:
os.remove("temp_audio.wav")
return 1
except Exception as e:
print(e)
print("Saving video to file failed")
return 0
# def write_video_opencv(video, video_rate, video_path):
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
# out = cv2.VideoWriter(video_path, fourcc, video_rate, (video.shape[2], video.shape[3]), 0)
# for frame in list(video):
# frame = np.squeeze(frame)
# out.write(np.squeeze(frame))
# out.release()
# # Code mostly inherited from bulletin
# def save_av_sample(video, video_rate, audio=None, audio_rate=16_000, path=None):
# # Save video sample in train dir for debugging
# # video_save = 0.5 * video.detach().cpu().numpy() + 0.5
# video_save = rearrange(video, "t c h w -> t h w c").detach().cpu().numpy()
# temp_filename = next(tempfile._get_candidate_names())
# if path:
# video_path = path
# else:
# video_path = "/tmp/" + next(tempfile._get_candidate_names()) + ".mp4"
# write_video_opencv((video_save).astype(np.uint8), video_rate, "/tmp/" + temp_filename + ".mp4")
# audio_save = audio.detach().squeeze().cpu().numpy()
# wav.write("/tmp/" + temp_filename + ".wav", audio_rate, audio_save)
# try:
# in1 = ffmpeg.input("/tmp/" + temp_filename + ".mp4")
# in2 = ffmpeg.input("/tmp/" + temp_filename + ".wav")
# out = ffmpeg.output(in1["v"], in2["a"], video_path, loglevel="panic").overwrite_output()
# out.run(capture_stdout=True, capture_stderr=True)
# except ffmpeg.Error as e:
# print("stdout:", e.stdout.decode("utf8"))
# print("stderr:", e.stderr.decode("utf8"))
# raise e
# return video_path
class VideoLogger(Callback):
def __init__(
self,
batch_frequency,
max_videos,
clamp=True,
increase_log_steps=True,
rescale=True,
disabled=False,
log_on_batch_idx=False,
log_first_step=False,
log_videos_kwargs=None,
log_before_first_step=False,
enable_autocast=True,
batch_frequency_val=None,
):
super().__init__()
self.enable_autocast = enable_autocast
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_videos = max_videos
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.batch_freq_val = default(batch_frequency_val, self.batch_freq)
self.log_steps_val = [2**n for n in range(int(np.log2(self.batch_freq_val)) + 1)]
if not increase_log_steps:
self.log_steps_val = [self.batch_freq_val]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_videos_kwargs = log_videos_kwargs if log_videos_kwargs else {}
self.log_first_step = log_first_step
self.log_before_first_step = log_before_first_step
@rank_zero_only
def log_local(
self,
save_dir,
split,
log_elements,
raw_audio,
global_step,
current_epoch,
batch_idx,
pl_module: Union[None, pl.LightningModule] = None,
):
root = os.path.join(save_dir, "videos", split)
for k in log_elements:
element = log_elements[k]
if len(element.shape) == 4:
grid = torchvision.utils.make_grid(element, nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
img = Image.fromarray(grid)
img.save(path)
if exists(pl_module):
assert isinstance(
pl_module.logger, WandbLogger
), "logger_log_image only supports WandbLogger currently"
pl_module.logger.log_image(
key=f"{split}/{k}",
images=[
img,
],
step=pl_module.global_step,
)
elif len(element.shape) == 5:
video = element
if self.rescale:
video = (video + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
video = video * 255.0
video = video.permute(0, 2, 1, 3, 4).cpu().detach().to(torch.uint8) # b,t,c,h,w
for i in range(video.shape[0]):
filename = "{}_gs-{:06}_e-{:06}_b-{:06}_{}.mp4".format(k, global_step, current_epoch, batch_idx, i)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
log_audio = raw_audio[i] if raw_audio is not None else None
success = save_audio_video(
video[i],
audio=log_audio.unsqueeze(0) if log_audio is not None else None,
frame_rate=25,
sample_rate=16000,
save_path=path,
keep_intermediate=False,
)
# video_path = save_av_sample(video[i], 25, audio=raw_audio, audio_rate=16000, path=None)
if exists(pl_module):
assert isinstance(
pl_module.logger, WandbLogger
), "logger_log_image only supports WandbLogger currently"
pl_module.logger.experiment.log(
{
f"{split}/{k}": wandb.Video(
path if success else video,
# caption=f"diffused videos w {n_frames} frames (condition left, generated right)",
fps=25,
format="mp4",
)
},
)
@rank_zero_only
def log_video(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
# print(f"check_idx: {check_idx}", f"split: {split}")
if (
self.check_frequency(check_idx, split=split)
and hasattr(pl_module, "log_videos") # batch_idx % self.batch_freq == 0
and callable(pl_module.log_videos)
and
# batch_idx > 5 and
self.max_videos > 0
):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
gpu_autocast_kwargs = {
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled(),
}
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
videos = pl_module.log_videos(batch, split=split, **self.log_videos_kwargs)
for k in videos:
N = min(videos[k].shape[0], self.max_videos)
videos[k] = videos[k][:N]
if isinstance(videos[k], torch.Tensor):
videos[k] = videos[k].detach().float().cpu()
if self.clamp:
videos[k] = torch.clamp(videos[k], -1.0, 1.0)
raw_audio = batch.get("raw_audio", None)
self.log_local(
pl_module.logger.save_dir,
split,
videos,
raw_audio,
pl_module.global_step,
pl_module.current_epoch,
batch_idx,
pl_module=pl_module if isinstance(pl_module.logger, WandbLogger) else None,
)
if is_train:
pl_module.train()
def check_frequency(self, check_idx, split="train"):
if split == "val":
if check_idx:
check_idx -= 1
if ((check_idx % self.batch_freq_val) == 0 or (check_idx in self.log_steps_val)) and (
check_idx > 0 or self.log_first_step
):
try:
self.log_steps_val.pop(0)
except IndexError as e:
print(e)
pass
return True
return False
if check_idx:
check_idx -= 1
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step
):
try:
self.log_steps.pop(0)
except IndexError as e:
print(e)
pass
return True
return False
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_video(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
if self.log_before_first_step and pl_module.global_step == 0:
print(f"{self.__class__.__name__}: logging before training")
self.log_video(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_video(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, "calibrate_grad_norm"):
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|