Spaces:
Running
Running
File size: 28,630 Bytes
b5ce381 4fd1a69 b5ce381 4fd1a69 b5ce381 4fd1a69 b5ce381 4fd1a69 b5ce381 4fd1a69 b5ce381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
import os
import math
from contextlib import contextmanager
from typing import Any, Dict, List, Optional, Tuple, Union
import re
import pytorch_lightning as pl
import torch
from omegaconf import ListConfig, OmegaConf
from safetensors.torch import load_file as load_safetensors
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange
from diffusers.models.attention_processor import IPAdapterAttnProcessor2_0
from ..modules import UNCONDITIONAL_CONFIG
from ..modules.autoencoding.temporal_ae import VideoDecoder
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from ..modules.ema import LitEma
from ..util import (
default,
disabled_train,
get_obj_from_str,
instantiate_from_config,
log_txt_as_img,
)
class DiffusionEngine(pl.LightningModule):
def __init__(
self,
network_config,
denoiser_config,
first_stage_config,
conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None,
sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None,
scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
network_wrapper: Union[None, str, Dict, ListConfig, OmegaConf] = None,
ckpt_path: Union[None, str] = None,
remove_keys_from_weights: Union[None, List, Tuple] = None,
pattern_to_remove: Union[None, str] = None,
remove_keys_from_unet_weights: Union[None, List, Tuple] = None,
use_ema: bool = False,
ema_decay_rate: float = 0.9999,
scale_factor: float = 1.0,
disable_first_stage_autocast=False,
input_key: str = "jpg",
log_keys: Union[List, None] = None,
no_log_keys: Union[List, None] = None,
no_cond_log: bool = False,
compile_model: bool = False,
en_and_decode_n_samples_a_time: Optional[int] = None,
only_train_ipadapter: Optional[bool] = False,
to_unfreeze: Optional[List[str]] = [],
to_freeze: Optional[List[str]] = [],
separate_unet_ckpt: Optional[str] = None,
use_thunder: Optional[bool] = False,
is_dubbing: Optional[bool] = False,
bad_model_path: Optional[str] = None,
bad_model_config: Optional[Dict] = None,
):
super().__init__()
# self.automatic_optimization = False
self.log_keys = log_keys
self.no_log_keys = no_log_keys
self.input_key = input_key
self.is_dubbing = is_dubbing
self.optimizer_config = default(
optimizer_config, {"target": "torch.optim.AdamW"}
)
self.model = self.initialize_network(
network_config, network_wrapper, compile_model=compile_model
)
self.denoiser = instantiate_from_config(denoiser_config)
self.sampler = (
instantiate_from_config(sampler_config)
if sampler_config is not None
else None
)
self.is_guided = True
if (
self.sampler
and "IdentityGuider" in sampler_config["params"]["guider_config"]["target"]
):
self.is_guided = False
if self.sampler is not None:
config_guider = sampler_config["params"]["guider_config"]
sampler_config["params"]["guider_config"] = None
self.sampler_no_guidance = instantiate_from_config(sampler_config)
sampler_config["params"]["guider_config"] = config_guider
self.conditioner = instantiate_from_config(
default(conditioner_config, UNCONDITIONAL_CONFIG)
)
self.scheduler_config = scheduler_config
self._init_first_stage(first_stage_config)
self.loss_fn = (
instantiate_from_config(loss_fn_config)
if loss_fn_config is not None
else None
)
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self.model, decay=ema_decay_rate)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
self.scale_factor = scale_factor
self.disable_first_stage_autocast = disable_first_stage_autocast
self.no_cond_log = no_cond_log
if ckpt_path is not None:
self.init_from_ckpt(
ckpt_path,
remove_keys_from_weights=remove_keys_from_weights,
pattern_to_remove=pattern_to_remove,
)
if separate_unet_ckpt is not None:
sd = torch.load(separate_unet_ckpt, weights_only=False)["state_dict"]
if remove_keys_from_unet_weights is not None:
for k in list(sd.keys()):
for remove_key in remove_keys_from_unet_weights:
if remove_key in k:
del sd[k]
self.model.diffusion_model.load_state_dict(sd, strict=False)
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
print(
"Using",
self.en_and_decode_n_samples_a_time,
"samples at a time for encoding and decoding",
)
if to_freeze:
for name, p in self.model.diffusion_model.named_parameters():
for layer in to_freeze:
if layer[0] == "!":
if layer[1:] not in name:
# print("Freezing", name)
p.requires_grad = False
else:
if layer in name:
# print("Freezing", name)
p.requires_grad = False
# if "time_" in name:
# print("Freezing", name)
# p.requires_grad = False
if only_train_ipadapter:
# Freeze the model
for p in self.model.parameters():
p.requires_grad = False
# Unfreeze the adapter projection layer
for p in self.model.diffusion_model.encoder_hid_proj.parameters():
p.requires_grad = True
# Unfreeze the cross-attention layer
for att_layer in self.model.diffusion_model.attn_processors.values():
if isinstance(att_layer, IPAdapterAttnProcessor2_0):
for p in att_layer.parameters():
p.requires_grad = True
# for name, p in self.named_parameters():
# if p.requires_grad:
# print(name)
if to_unfreeze:
for name in to_unfreeze:
for p in getattr(self.model.diffusion_model, name).parameters():
p.requires_grad = True
if use_thunder:
import thunder
self.model.diffusion_model = thunder.jit(self.model.diffusion_model)
if "Karras" in denoiser_config.target:
assert bad_model_path is not None, (
"bad_model_path must be provided for KarrasGuidanceDenoiser"
)
karras_config = default(bad_model_config, network_config)
bad_model = self.initialize_network(
karras_config, network_wrapper, compile_model=compile_model
)
state_dict = self.load_bad_model_weights(bad_model_path)
bad_model.load_state_dict(state_dict)
self.denoiser.set_bad_network(bad_model)
def load_bad_model_weights(self, path: str) -> None:
print(f"Restoring bad model from {path}")
state_dict = torch.load(path, map_location="cpu", weights_only=False)
new_dict = {}
for k, v in state_dict["module"].items():
if "learned_mask" in k:
new_dict[k.replace("_forward_module.", "").replace("model.", "")] = v
if "diffusion_model" in k:
new_dict["diffusion_model" + k.split("diffusion_model")[1]] = v
return new_dict
def initialize_network(self, network_config, network_wrapper, compile_model=False):
model = instantiate_from_config(network_config)
if isinstance(network_wrapper, str) or network_wrapper is None:
model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
model, compile_model=compile_model
)
else:
target = network_wrapper["target"]
params = network_wrapper.get("params", dict())
model = get_obj_from_str(target)(
model, compile_model=compile_model, **params
)
return model
def init_from_ckpt(
self,
path: str,
remove_keys_from_weights: Optional[Union[List, Tuple]] = None,
pattern_to_remove: str = None,
) -> None:
print(f"Restoring from {path}")
if path.endswith("ckpt"):
sd = torch.load(path, map_location="cpu", weights_only=False)["state_dict"]
elif path.endswith("pt"):
sd = torch.load(path, map_location="cpu", weights_only=False)["module"]
# Remove leading _forward_module from keys
sd = {k.replace("_forward_module.", ""): v for k, v in sd.items()}
elif path.endswith("bin"):
sd = torch.load(path, map_location="cpu", weights_only=False)
# Remove leading _forward_module from keys
sd = {k.replace("_forward_module.", ""): v for k, v in sd.items()}
elif path.endswith("safetensors"):
sd = load_safetensors(path)
else:
raise NotImplementedError
print(f"Loaded state dict from {path} with {len(sd)} keys")
# if remove_keys_from_weights is not None:
# for k in list(sd.keys()):
# for remove_key in remove_keys_from_weights:
# if remove_key in k:
# del sd[k]
if pattern_to_remove is not None or remove_keys_from_weights is not None:
sd = self.remove_mismatched_keys(
sd, pattern_to_remove, remove_keys_from_weights
)
missing, unexpected = self.load_state_dict(sd, strict=False)
print(
f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
)
if len(missing) > 0:
print(f"Missing Keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected Keys: {unexpected}")
def remove_mismatched_keys(self, state_dict, pattern=None, additional_keys=None):
"""Remove keys from the state dictionary based on a pattern and a list of additional specific keys."""
# Find keys that match the pattern
if pattern is not None:
mismatched_keys = [key for key in state_dict if re.search(pattern, key)]
else:
mismatched_keys = []
print(f"Removing {len(mismatched_keys)} keys based on pattern {pattern}")
print(mismatched_keys)
# Add specific keys to be removed
if additional_keys:
mismatched_keys.extend(
[key for key in additional_keys if key in state_dict]
)
# Remove all identified keys
for key in mismatched_keys:
if key in state_dict:
del state_dict[key]
return state_dict
def _init_first_stage(self, config):
model = instantiate_from_config(config).eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
self.first_stage_model = model
if self.input_key == "latents":
# Remove encoder to save memory
self.first_stage_model.encoder = None
torch.cuda.empty_cache()
def get_input(self, batch):
# assuming unified data format, dataloader returns a dict.
# image tensors should be scaled to -1 ... 1 and in bchw format
return batch[self.input_key]
@torch.no_grad()
def decode_first_stage(self, z):
is_video = False
if len(z.shape) == 5:
is_video = True
T = z.shape[2]
z = rearrange(z, "b c t h w -> (b t) c h w")
z = 1.0 / self.scale_factor * z
n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
n_rounds = math.ceil(z.shape[0] / n_samples)
all_out = []
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
for n in range(n_rounds):
if isinstance(self.first_stage_model.decoder, VideoDecoder):
kwargs = {"timesteps": len(z[n * n_samples : (n + 1) * n_samples])}
else:
kwargs = {}
out = self.first_stage_model.decode(
z[n * n_samples : (n + 1) * n_samples], **kwargs
)
all_out.append(out)
out = torch.cat(all_out, dim=0)
if is_video:
out = rearrange(out, "(b t) c h w -> b c t h w", t=T)
torch.cuda.empty_cache()
return out
@torch.no_grad()
def encode_first_stage(self, x):
is_video = False
if len(x.shape) == 5:
is_video = True
T = x.shape[2]
x = rearrange(x, "b c t h w -> (b t) c h w")
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0])
n_rounds = math.ceil(x.shape[0] / n_samples)
all_out = []
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
for n in range(n_rounds):
out = self.first_stage_model.encode(
x[n * n_samples : (n + 1) * n_samples]
)
all_out.append(out)
z = torch.cat(all_out, dim=0)
z = self.scale_factor * z
if is_video:
z = rearrange(z, "(b t) c h w -> b c t h w", t=T)
return z
def forward(self, x, batch):
loss_dict = self.loss_fn(
self.model,
self.denoiser,
self.conditioner,
x,
batch,
self.first_stage_model,
)
# loss_mean = loss.mean()
for k in loss_dict:
loss_dict[k] = loss_dict[k].mean()
# loss_dict = {"loss": loss_mean}
return loss_dict["loss"], loss_dict
def shared_step(self, batch: Dict) -> Any:
x = self.get_input(batch)
if self.input_key != "latents":
x = self.encode_first_stage(x)
batch["global_step"] = self.global_step
loss, loss_dict = self(x, batch)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
# debugging_message = "Training step"
# print(f"RANK - {self.trainer.global_rank}: {debugging_message}")
self.log_dict(
loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False
)
self.log(
"global_step",
self.global_step,
prog_bar=True,
logger=True,
on_step=True,
on_epoch=False,
)
# debugging_message = "Training step - log"
# print(f"RANK - {self.trainer.global_rank}: {debugging_message}")
if self.scheduler_config is not None:
lr = self.optimizers().param_groups[0]["lr"]
self.log(
"lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
)
# # to prevent other processes from moving forward until all processes are in sync
# self.trainer.strategy.barrier()
return loss
# def validation_step(self, batch, batch_idx):
# # loss, loss_dict = self.shared_step(batch)
# # self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False)
# self.log(
# "global_step",
# self.global_step,
# prog_bar=True,
# logger=True,
# on_step=True,
# on_epoch=False,
# )
# return 0
# def on_train_epoch_start(self, *args, **kwargs):
# print(f"RANK - {self.trainer.global_rank}: on_train_epoch_start")
def on_train_start(self, *args, **kwargs):
# os.environ["CUDA_VISIBLE_DEVICES"] = str(self.trainer.global_rank)
# torch.cuda.set_device(self.trainer.global_rank)
# torch.cuda.empty_cache()
if self.sampler is None or self.loss_fn is None:
raise ValueError("Sampler and loss function need to be set for training.")
# def on_before_batch_transfer(self, batch, dataloader_idx):
# print(f"RANK - {self.trainer.global_rank}: on_before_batch_transfer - {dataloader_idx}")
# return batch
# def on_after_batch_transfer(self, batch, dataloader_idx):
# print(f"RANK - {self.trainer.global_rank}: on_after_batch_transfer - {dataloader_idx}")
# return batch
def on_train_batch_end(self, *args, **kwargs):
# print(f"RANK - {self.trainer.global_rank}: on_train_batch_end")
if self.use_ema:
self.model_ema(self.model)
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def instantiate_optimizer_from_config(self, params, lr, cfg):
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.model.parameters())
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
params = params + list(embedder.parameters())
opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config)
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
"interval": "step",
"frequency": 1,
}
]
return [opt], scheduler
return opt
@torch.no_grad()
def sample(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
**kwargs,
):
randn = torch.randn(batch_size, *shape).to(self.device)
denoiser = lambda input, sigma, c: self.denoiser(
self.model, input, sigma, c, **kwargs
)
samples = self.sampler(denoiser, randn, cond, uc=uc)
return samples
@torch.no_grad()
def sample_no_guider(
self,
cond: Dict,
uc: Union[Dict, None] = None,
batch_size: int = 16,
shape: Union[None, Tuple, List] = None,
**kwargs,
):
randn = torch.randn(batch_size, *shape).to(self.device)
denoiser = lambda input, sigma, c: self.denoiser(
self.model, input, sigma, c, **kwargs
)
samples = self.sampler_no_guidance(denoiser, randn, cond, uc=uc)
return samples
@torch.no_grad()
def log_conditionings(self, batch: Dict, n: int) -> Dict:
"""
Defines heuristics to log different conditionings.
These can be lists of strings (text-to-image), tensors, ints, ...
"""
image_h, image_w = batch[self.input_key].shape[-2:]
log = dict()
for embedder in self.conditioner.embedders:
if (
(self.log_keys is None) or (embedder.input_key in self.log_keys)
) and not self.no_cond_log:
if embedder.input_key in self.no_log_keys:
continue
x = batch[embedder.input_key][:n]
if isinstance(x, torch.Tensor):
if x.dim() == 1:
# class-conditional, convert integer to string
x = [str(x[i].item()) for i in range(x.shape[0])]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4)
elif x.dim() == 2:
# size and crop cond and the like
x = [
"x".join([str(xx) for xx in x[i].tolist()])
for i in range(x.shape[0])
]
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
elif x.dim() == 4: # already an image
xc = x
elif x.dim() == 5:
xc = torch.cat([x[:, :, i] for i in range(x.shape[2])], dim=-1)
else:
print(x.shape, embedder.input_key)
raise NotImplementedError()
elif isinstance(x, (List, ListConfig)):
if isinstance(x[0], str):
# strings
xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
else:
raise NotImplementedError()
else:
raise NotImplementedError()
log[embedder.input_key] = xc
return log
@torch.no_grad()
def log_images(
self,
batch: Dict,
N: int = 8,
sample: bool = True,
ucg_keys: List[str] = None,
**kwargs,
) -> Dict:
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
if ucg_keys:
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
"Each defined ucg key for sampling must be in the provided conditioner input keys,"
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
)
else:
ucg_keys = conditioner_input_keys
log = dict()
x = self.get_input(batch)
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0
else [],
)
sampling_kwargs = {}
N = min(x.shape[0], N)
x = x.to(self.device)[:N]
if self.input_key != "latents":
log["inputs"] = x
z = self.encode_first_stage(x)
else:
z = x
log["reconstructions"] = self.decode_first_stage(z)
log.update(self.log_conditionings(batch, N))
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
if sample:
with self.ema_scope("Plotting"):
samples = self.sample(
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
log["samples"] = samples
with self.ema_scope("Plotting"):
samples = self.sample_no_guider(
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
log["samples_no_guidance"] = samples
return log
@torch.no_grad()
def log_videos(
self,
batch: Dict,
N: int = 8,
sample: bool = True,
ucg_keys: List[str] = None,
**kwargs,
) -> Dict:
# conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]
# if ucg_keys:
# assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
# "Each defined ucg key for sampling must be in the provided conditioner input keys,"
# f"but we have {ucg_keys} vs. {conditioner_input_keys}"
# )
# else:
# ucg_keys = conditioner_input_keys
log = dict()
batch_uc = {}
x = self.get_input(batch)
num_frames = x.shape[2] # assuming bcthw format
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=ucg_keys
if ucg_keys is not None
else [
"cond_frames",
"cond_frames_without_noise",
],
)
# for k in ["crossattn", "concat"]:
# uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
# uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
# c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
# c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
sampling_kwargs = {}
N = min(x.shape[0], N)
x = x.to(self.device)[:N]
if self.input_key != "latents":
log["inputs"] = x
z = self.encode_first_stage(x)
else:
z = x
log["reconstructions"] = self.decode_first_stage(z)
log.update(self.log_conditionings(batch, N))
if c.get("masks", None) is not None:
# Create a mask reconstruction
masks = 1 - c["masks"]
t = masks.shape[2]
masks = rearrange(masks, "b c t h w -> (b t) c h w")
target_size = (
log["reconstructions"].shape[-2],
log["reconstructions"].shape[-1],
)
masks = torch.nn.functional.interpolate(
masks, size=target_size, mode="nearest"
)
masks = rearrange(masks, "(b t) c h w -> b c t h w", t=t)
log["mask_reconstructions"] = log["reconstructions"] * masks
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
elif isinstance(c[k], list):
for i in range(len(c[k])):
c[k][i], uc[k][i] = map(
lambda y: y[k][i][:N].to(self.device), (c, uc)
)
if sample:
n = 2 if self.is_guided else 1
# if num_frames == 1:
# sampling_kwargs["image_only_indicator"] = torch.ones(n, num_frames).to(self.device)
# else:
sampling_kwargs["image_only_indicator"] = torch.zeros(n, num_frames).to(
self.device
)
sampling_kwargs["num_video_frames"] = batch["num_video_frames"]
with self.ema_scope("Plotting"):
samples = self.sample(
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
if self.is_dubbing:
samples[:, :, :, : samples.shape[-2] // 2] = log["reconstructions"][
:, :, :, : samples.shape[-2] // 2
]
log["samples"] = samples
# Without guidance
# if num_frames == 1:
# sampling_kwargs["image_only_indicator"] = torch.ones(1, num_frames).to(self.device)
# else:
sampling_kwargs["image_only_indicator"] = torch.zeros(1, num_frames).to(
self.device
)
sampling_kwargs["num_video_frames"] = batch["num_video_frames"]
with self.ema_scope("Plotting"):
samples = self.sample_no_guider(
c, shape=z.shape[1:], uc=uc, batch_size=N, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
if self.is_dubbing:
samples[:, :, :, : samples.shape[-2] // 2] = log["reconstructions"][
:, :, :, : samples.shape[-2] // 2
]
log["samples_no_guidance"] = samples
torch.cuda.empty_cache()
return log
|