"""Augmentation pipeline used in the paper "Elucidating the Design Space of Diffusion-Based Generative Models". Built around the same concepts that were originally proposed in the paper "Training Generative Adversarial Networks with Limited Data".""" import numpy as np import torch from einops import rearrange, repeat def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d _constant_cache = dict() def constant(value, shape=None, dtype=None, device=None, memory_format=None): value = np.asarray(value) if shape is not None: shape = tuple(shape) if dtype is None: dtype = torch.get_default_dtype() if device is None: device = torch.device("cpu") if memory_format is None: memory_format = torch.contiguous_format key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format) tensor = _constant_cache.get(key, None) if tensor is None: tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device) if shape is not None: tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape)) tensor = tensor.contiguous(memory_format=memory_format) _constant_cache[key] = tensor return tensor # ---------------------------------------------------------------------------- # Coefficients of various wavelet decomposition low-pass filters. wavelets = { "haar": [0.7071067811865476, 0.7071067811865476], "db1": [0.7071067811865476, 0.7071067811865476], "db2": [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025], "db3": [ 0.035226291882100656, -0.08544127388224149, -0.13501102001039084, 0.4598775021193313, 0.8068915093133388, 0.3326705529509569, ], "db4": [ -0.010597401784997278, 0.032883011666982945, 0.030841381835986965, -0.18703481171888114, -0.02798376941698385, 0.6308807679295904, 0.7148465705525415, 0.23037781330885523, ], "db5": [ 0.003335725285001549, -0.012580751999015526, -0.006241490213011705, 0.07757149384006515, -0.03224486958502952, -0.24229488706619015, 0.13842814590110342, 0.7243085284385744, 0.6038292697974729, 0.160102397974125, ], "db6": [ -0.00107730108499558, 0.004777257511010651, 0.0005538422009938016, -0.031582039318031156, 0.02752286553001629, 0.09750160558707936, -0.12976686756709563, -0.22626469396516913, 0.3152503517092432, 0.7511339080215775, 0.4946238903983854, 0.11154074335008017, ], "db7": [ 0.0003537138000010399, -0.0018016407039998328, 0.00042957797300470274, 0.012550998556013784, -0.01657454163101562, -0.03802993693503463, 0.0806126091510659, 0.07130921926705004, -0.22403618499416572, -0.14390600392910627, 0.4697822874053586, 0.7291320908465551, 0.39653931948230575, 0.07785205408506236, ], "db8": [ -0.00011747678400228192, 0.0006754494059985568, -0.0003917403729959771, -0.00487035299301066, 0.008746094047015655, 0.013981027917015516, -0.04408825393106472, -0.01736930100202211, 0.128747426620186, 0.00047248457399797254, -0.2840155429624281, -0.015829105256023893, 0.5853546836548691, 0.6756307362980128, 0.3128715909144659, 0.05441584224308161, ], "sym2": [-0.12940952255092145, 0.22414386804185735, 0.836516303737469, 0.48296291314469025], "sym3": [ 0.035226291882100656, -0.08544127388224149, -0.13501102001039084, 0.4598775021193313, 0.8068915093133388, 0.3326705529509569, ], "sym4": [ -0.07576571478927333, -0.02963552764599851, 0.49761866763201545, 0.8037387518059161, 0.29785779560527736, -0.09921954357684722, -0.012603967262037833, 0.0322231006040427, ], "sym5": [ 0.027333068345077982, 0.029519490925774643, -0.039134249302383094, 0.1993975339773936, 0.7234076904024206, 0.6339789634582119, 0.01660210576452232, -0.17532808990845047, -0.021101834024758855, 0.019538882735286728, ], "sym6": [ 0.015404109327027373, 0.0034907120842174702, -0.11799011114819057, -0.048311742585633, 0.4910559419267466, 0.787641141030194, 0.3379294217276218, -0.07263752278646252, -0.021060292512300564, 0.04472490177066578, 0.0017677118642428036, -0.007800708325034148, ], "sym7": [ 0.002681814568257878, -0.0010473848886829163, -0.01263630340325193, 0.03051551316596357, 0.0678926935013727, -0.049552834937127255, 0.017441255086855827, 0.5361019170917628, 0.767764317003164, 0.2886296317515146, -0.14004724044296152, -0.10780823770381774, 0.004010244871533663, 0.010268176708511255, ], "sym8": [ -0.0033824159510061256, -0.0005421323317911481, 0.03169508781149298, 0.007607487324917605, -0.1432942383508097, -0.061273359067658524, 0.4813596512583722, 0.7771857517005235, 0.3644418948353314, -0.05194583810770904, -0.027219029917056003, 0.049137179673607506, 0.003808752013890615, -0.01495225833704823, -0.0003029205147213668, 0.0018899503327594609, ], } # ---------------------------------------------------------------------------- # Helpers for constructing transformation matrices. def matrix(*rows, device=None): assert all(len(row) == len(rows[0]) for row in rows) elems = [x for row in rows for x in row] ref = [x for x in elems if isinstance(x, torch.Tensor)] if len(ref) == 0: return constant(np.asarray(rows), device=device) assert device is None or device == ref[0].device elems = [ x if isinstance(x, torch.Tensor) else constant(x, shape=ref[0].shape, device=ref[0].device) for x in elems ] return torch.stack(elems, dim=-1).reshape(ref[0].shape + (len(rows), -1)) def translate2d(tx, ty, **kwargs): return matrix([1, 0, tx], [0, 1, ty], [0, 0, 1], **kwargs) def translate3d(tx, ty, tz, **kwargs): return matrix([1, 0, 0, tx], [0, 1, 0, ty], [0, 0, 1, tz], [0, 0, 0, 1], **kwargs) def scale2d(sx, sy, **kwargs): return matrix([sx, 0, 0], [0, sy, 0], [0, 0, 1], **kwargs) def scale3d(sx, sy, sz, **kwargs): return matrix([sx, 0, 0, 0], [0, sy, 0, 0], [0, 0, sz, 0], [0, 0, 0, 1], **kwargs) def rotate2d(theta, **kwargs): return matrix( [torch.cos(theta), torch.sin(-theta), 0], [torch.sin(theta), torch.cos(theta), 0], [0, 0, 1], **kwargs ) def rotate3d(v, theta, **kwargs): vx = v[..., 0] vy = v[..., 1] vz = v[..., 2] s = torch.sin(theta) c = torch.cos(theta) cc = 1 - c return matrix( [vx * vx * cc + c, vx * vy * cc - vz * s, vx * vz * cc + vy * s, 0], [vy * vx * cc + vz * s, vy * vy * cc + c, vy * vz * cc - vx * s, 0], [vz * vx * cc - vy * s, vz * vy * cc + vx * s, vz * vz * cc + c, 0], [0, 0, 0, 1], **kwargs, ) def translate2d_inv(tx, ty, **kwargs): return translate2d(-tx, -ty, **kwargs) def scale2d_inv(sx, sy, **kwargs): return scale2d(1 / sx, 1 / sy, **kwargs) def rotate2d_inv(theta, **kwargs): return rotate2d(-theta, **kwargs) # ---------------------------------------------------------------------------- # Augmentation pipeline main class. # All augmentations are disabled by default; individual augmentations can # be enabled by setting their probability multipliers to 1. class AugmentPipe: def __init__( self, p=1, xflip=0, yflip=0, rotate_int=0, translate_int=0, translate_int_max=0.125, scale=0, rotate_frac=0, aniso=0, translate_frac=0, scale_std=0.2, rotate_frac_max=1, aniso_std=0.2, aniso_rotate_prob=0.5, translate_frac_std=0.125, brightness=0, contrast=0, lumaflip=0, hue=0, saturation=0, brightness_std=0.2, contrast_std=0.5, hue_max=1, saturation_std=1, ): super().__init__() self.p = float(p) # Overall multiplier for augmentation probability. # Pixel blitting. self.xflip = float(xflip) # Probability multiplier for x-flip. self.yflip = float(yflip) # Probability multiplier for y-flip. self.rotate_int = float(rotate_int) # Probability multiplier for integer rotation. self.translate_int = float(translate_int) # Probability multiplier for integer translation. self.translate_int_max = float( translate_int_max ) # Range of integer translation, relative to image dimensions. # Geometric transformations. self.scale = float(scale) # Probability multiplier for isotropic scaling. self.rotate_frac = float(rotate_frac) # Probability multiplier for fractional rotation. self.aniso = float(aniso) # Probability multiplier for anisotropic scaling. self.translate_frac = float(translate_frac) # Probability multiplier for fractional translation. self.scale_std = float(scale_std) # Log2 standard deviation of isotropic scaling. self.rotate_frac_max = float(rotate_frac_max) # Range of fractional rotation, 1 = full circle. self.aniso_std = float(aniso_std) # Log2 standard deviation of anisotropic scaling. self.aniso_rotate_prob = float( aniso_rotate_prob ) # Probability of doing anisotropic scaling w.r.t. rotated coordinate frame. self.translate_frac_std = float( translate_frac_std ) # Standard deviation of frational translation, relative to image dimensions. # Color transformations. self.brightness = float(brightness) # Probability multiplier for brightness. self.contrast = float(contrast) # Probability multiplier for contrast. self.lumaflip = float(lumaflip) # Probability multiplier for luma flip. self.hue = float(hue) # Probability multiplier for hue rotation. self.saturation = float(saturation) # Probability multiplier for saturation. self.brightness_std = float(brightness_std) # Standard deviation of brightness. self.contrast_std = float(contrast_std) # Log2 standard deviation of contrast. self.hue_max = float(hue_max) # Range of hue rotation, 1 = full circle. self.saturation_std = float(saturation_std) # Log2 standard deviation of saturation. def __call__(self, images): F = None repeat_frames = False if len(images.shape) == 5: N, C, F, H, W = images.shape images = rearrange(images, "n c f h w -> (n f) c h w") repeat_frames = True elif len(images.shape) == 4: N, C, H, W = images.shape device = images.device labels = [torch.zeros([images.shape[0], 0], device=device)] # --------------- # Pixel blitting. # --------------- if self.xflip > 0: w = torch.randint(2, [N, 1, 1, 1], device=device) w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.xflip * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n c h w -> (n f) c h w", f=F) images = torch.where(w == 1, images.flip(3), images) labels += [w] if self.yflip > 0: w = torch.randint(2, [N, 1, 1, 1], device=device) w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.yflip * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n c h w -> (n f) c h w", f=F) images = torch.where(w == 1, images.flip(2), images) labels += [w] if self.rotate_int > 0: w = torch.randint(4, [N, 1, 1, 1], device=device) w = torch.where(torch.rand([N, 1, 1, 1], device=device) < self.rotate_int * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n c h w -> (n f) c h w", f=F) images = torch.where((w == 1) | (w == 2), images.flip(3), images) images = torch.where((w == 2) | (w == 3), images.flip(2), images) images = torch.where((w == 1) | (w == 3), images.transpose(2, 3), images) labels += [(w == 1) | (w == 2), (w == 2) | (w == 3)] if self.translate_int > 0: w = torch.rand([2, N, 1, 1, 1], device=device) * 2 - 1 w = torch.where( torch.rand([1, N, 1, 1, 1], device=device) < self.translate_int * self.p, w, torch.zeros_like(w) ) if repeat_frames: w = repeat(w, "* n c h w -> * (n f) c h w", f=F) tx = w[0].mul(W * self.translate_int_max).round().to(torch.int64) ty = w[1].mul(H * self.translate_int_max).round().to(torch.int64) b, c, y, x = torch.meshgrid(*(torch.arange(x, device=device) for x in images.shape), indexing="ij") x = W - 1 - (W - 1 - (x - tx) % (W * 2 - 2)).abs() y = H - 1 - (H - 1 - (y + ty) % (H * 2 - 2)).abs() images = images.flatten()[(((b * C) + c) * H + y) * W + x] labels += [tx.div(W * self.translate_int_max), ty.div(H * self.translate_int_max)] # ------------------------------------------------ # Select parameters for geometric transformations. # ------------------------------------------------ I_3 = torch.eye(3, device=device) G_inv = I_3 if self.scale > 0: w = torch.randn([N], device=device) w = torch.where(torch.rand([N], device=device) < self.scale * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) s = w.mul(self.scale_std).exp2() G_inv = G_inv @ scale2d_inv(s, s) labels += [w] if self.rotate_frac > 0: w = (torch.rand([N], device=device) * 2 - 1) * (np.pi * self.rotate_frac_max) w = torch.where(torch.rand([N], device=device) < self.rotate_frac * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) G_inv = G_inv @ rotate2d_inv(-w) labels += [w.cos() - 1, w.sin()] if self.aniso > 0: w = torch.randn([N], device=device) r = (torch.rand([N], device=device) * 2 - 1) * np.pi w = torch.where(torch.rand([N], device=device) < self.aniso * self.p, w, torch.zeros_like(w)) r = torch.where(torch.rand([N], device=device) < self.aniso_rotate_prob, r, torch.zeros_like(r)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) r = repeat(r, "n -> (n f)", f=F) s = w.mul(self.aniso_std).exp2() G_inv = G_inv @ rotate2d_inv(r) @ scale2d_inv(s, 1 / s) @ rotate2d_inv(-r) labels += [w * r.cos(), w * r.sin()] if self.translate_frac > 0: w = torch.randn([2, N], device=device) w = torch.where(torch.rand([1, N], device=device) < self.translate_frac * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "c n -> c (n f)", f=F) G_inv = G_inv @ translate2d_inv( w[0].mul(W * self.translate_frac_std), w[1].mul(H * self.translate_frac_std) ) labels += [w[0], w[1]] # ---------------------------------- # Execute geometric transformations. # ---------------------------------- if G_inv is not I_3: cx = (W - 1) / 2 cy = (H - 1) / 2 cp = matrix([-cx, -cy, 1], [cx, -cy, 1], [cx, cy, 1], [-cx, cy, 1], device=device) # [idx, xyz] cp = G_inv @ cp.t() # [batch, xyz, idx] Hz = np.asarray(wavelets["sym6"], dtype=np.float32) Hz_pad = len(Hz) // 4 margin = cp[:, :2, :].permute(1, 0, 2).flatten(1) # [xy, batch * idx] margin = torch.cat([-margin, margin]).max(dim=1).values # [x0, y0, x1, y1] margin = margin + constant([Hz_pad * 2 - cx, Hz_pad * 2 - cy] * 2, device=device) margin = margin.max(constant([0, 0] * 2, device=device)) margin = margin.min(constant([W - 1, H - 1] * 2, device=device)) mx0, my0, mx1, my1 = margin.ceil().to(torch.int32) # Pad image and adjust origin. images = torch.nn.functional.pad(input=images, pad=[mx0, mx1, my0, my1], mode="reflect") G_inv = translate2d((mx0 - mx1) / 2, (my0 - my1) / 2) @ G_inv # Upsample. conv_weight = constant(Hz[None, None, ::-1], dtype=images.dtype, device=images.device).tile( [images.shape[1], 1, 1] ) conv_pad = (len(Hz) + 1) // 2 images = torch.stack([images, torch.zeros_like(images)], dim=4).reshape( N * default(F, 1), C, images.shape[2], -1 )[:, :, :, :-1] images = torch.nn.functional.conv2d( images, conv_weight.unsqueeze(2), groups=images.shape[1], padding=[0, conv_pad] ) images = torch.stack([images, torch.zeros_like(images)], dim=3).reshape( N * default(F, 1), C, -1, images.shape[3] )[:, :, :-1, :] images = torch.nn.functional.conv2d( images, conv_weight.unsqueeze(3), groups=images.shape[1], padding=[conv_pad, 0] ) G_inv = scale2d(2, 2, device=device) @ G_inv @ scale2d_inv(2, 2, device=device) G_inv = translate2d(-0.5, -0.5, device=device) @ G_inv @ translate2d_inv(-0.5, -0.5, device=device) # Execute transformation. shape = [N * default(F, 1), C, (H + Hz_pad * 2) * 2, (W + Hz_pad * 2) * 2] G_inv = ( scale2d(2 / images.shape[3], 2 / images.shape[2], device=device) @ G_inv @ scale2d_inv(2 / shape[3], 2 / shape[2], device=device) ) grid = torch.nn.functional.affine_grid(theta=G_inv[:, :2, :], size=shape, align_corners=False) images = torch.nn.functional.grid_sample( images, grid, mode="bilinear", padding_mode="zeros", align_corners=False ) # Downsample and crop. conv_weight = constant(Hz[None, None, :], dtype=images.dtype, device=images.device).tile( [images.shape[1], 1, 1] ) conv_pad = (len(Hz) - 1) // 2 images = torch.nn.functional.conv2d( images, conv_weight.unsqueeze(2), groups=images.shape[1], stride=[1, 2], padding=[0, conv_pad] )[:, :, :, Hz_pad:-Hz_pad] images = torch.nn.functional.conv2d( images, conv_weight.unsqueeze(3), groups=images.shape[1], stride=[2, 1], padding=[conv_pad, 0] )[:, :, Hz_pad:-Hz_pad, :] # -------------------------------------------- # Select parameters for color transformations. # -------------------------------------------- I_4 = torch.eye(4, device=device) M = I_4 luma_axis = constant(np.asarray([1, 1, 1, 0]) / np.sqrt(3), device=device) if self.brightness > 0: w = torch.randn([N], device=device) w = torch.where(torch.rand([N], device=device) < self.brightness * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) b = w * self.brightness_std M = translate3d(b, b, b) @ M labels += [w] if self.contrast > 0: w = torch.randn([N], device=device) w = torch.where(torch.rand([N], device=device) < self.contrast * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) c = w.mul(self.contrast_std).exp2() M = scale3d(c, c, c) @ M labels += [w] if self.lumaflip > 0: w = torch.randint(2, [N, 1, 1], device=device) w = torch.where(torch.rand([N, 1, 1], device=device) < self.lumaflip * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n 1 1-> (n f) 1 1", f=F) M = (I_4 - 2 * luma_axis.ger(luma_axis) * w) @ M labels += [w] if self.hue > 0: w = (torch.rand([N], device=device) * 2 - 1) * (np.pi * self.hue_max) w = torch.where(torch.rand([N], device=device) < self.hue * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n -> (n f)", f=F) M = rotate3d(luma_axis, w) @ M labels += [w.cos() - 1, w.sin()] if self.saturation > 0: w = torch.randn([N, 1, 1], device=device) w = torch.where(torch.rand([N, 1, 1], device=device) < self.saturation * self.p, w, torch.zeros_like(w)) if repeat_frames: w = repeat(w, "n 1 1-> (n f) 1 1", f=F) M = (luma_axis.ger(luma_axis) + (I_4 - luma_axis.ger(luma_axis)) * w.mul(self.saturation_std).exp2()) @ M labels += [w] # ------------------------------ # Execute color transformations. # ------------------------------ if M is not I_4: images = images.reshape([N * default(F, 1), C, H * W]) if C == 3: images = M[:, :3, :3] @ images + M[:, :3, 3:] elif C == 1: M = M[:, :3, :].mean(dim=1, keepdims=True) images = images * M[:, :, :3].sum(dim=2, keepdims=True) + M[:, :, 3:] else: raise ValueError("Image must be RGB (3 channels) or L (1 channel)") images = images.reshape([N * default(F, 1), C, H, W]) labels = torch.cat([x.to(torch.float32).reshape(N, -1) for x in labels], dim=1) if F is not None: images = rearrange(images, "(n f) c h w -> n c f h w", f=F) labels = rearrange(labels, "n (f l) -> n f l", f=F)[:, 0] # assert labels[:, 0].eq(labels[:, 1]).all() # check that all frames have the same labels # labels = labels[:, 0] # its the same for all frames, so we can just take the first one return images, labels # ----------------------------------------------------------------------------