File size: 9,083 Bytes
f5776d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import logging
from logging.handlers import RotatingFileHandler
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
handlers=[
logging.FileHandler('openai_usage.log')
]
)
import functools
import json
from typing import Any, Literal, Optional, cast
import dsp
import backoff
import openai
from dsp.modules.cache_utils import CacheMemory, NotebookCacheMemory, cache_turn_on
from dsp.modules.lm import LM
try:
OPENAI_LEGACY = int(openai.version.__version__[0]) == 0
except Exception:
OPENAI_LEGACY = True
try:
from openai.openai_object import OpenAIObject
import openai.error
ERRORS = (openai.error.RateLimitError, openai.error.ServiceUnavailableError, openai.error.APIError)
except Exception:
ERRORS = (openai.RateLimitError, openai.APIError)
OpenAIObject = dict
def backoff_hdlr(details):
"""Handler from https://pypi.org/project/backoff/"""
print(
"Backing off {wait:0.1f} seconds after {tries} tries "
"calling function {target} with kwargs "
"{kwargs}".format(**details)
)
class GPT3(LM):
"""Wrapper around OpenAI's GPT API. Supports both the OpenAI and Azure APIs.
Args:
model (str, optional): OpenAI or Azure supported LLM model to use. Defaults to "text-davinci-002".
api_key (Optional[str], optional): API provider Authentication token. use Defaults to None.
api_provider (Literal["openai", "azure"], optional): The API provider to use. Defaults to "openai".
model_type (Literal["chat", "text"], optional): The type of model that was specified. Mainly to decide the optimal prompting strategy. Defaults to "text".
**kwargs: Additional arguments to pass to the API provider.
"""
def __init__(
self,
model: str = "gpt-3.5-turbo-instruct",
api_key: Optional[str] = None,
api_provider: Literal["openai", "azure"] = "openai",
api_base: Optional[str] = None,
model_type: Literal["chat", "text"] = None,
**kwargs,
):
super().__init__(model)
self.provider = "openai"
openai.api_type = api_provider
default_model_type = (
"chat"
if ("gpt-3.5" in model or "turbo" in model or "gpt-4" in model)
and ("instruct" not in model)
else "text"
)
self.model_type = model_type if model_type else default_model_type
if api_provider == "azure":
assert (
"engine" in kwargs or "deployment_id" in kwargs
), "Must specify engine or deployment_id for Azure API instead of model."
assert "api_version" in kwargs, "Must specify api_version for Azure API"
assert api_base is not None, "Must specify api_base for Azure API"
if kwargs.get("api_version"):
openai.api_version = kwargs["api_version"]
if api_key:
openai.api_key = api_key
if api_base:
if OPENAI_LEGACY:
openai.api_base = api_base
else:
openai.base_url = api_base
self.kwargs = {
"temperature": 0.0,
"max_tokens": 150,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
"n": 1,
**kwargs,
} # TODO: add kwargs above for </s>
if api_provider != "azure":
self.kwargs["model"] = model
self.history: list[dict[str, Any]] = []
def _openai_client(self):
return openai
def log_usage(self, response):
"""Log the total tokens from the OpenAI API response."""
usage_data = response.get('usage')
if usage_data:
total_tokens = usage_data.get('total_tokens')
logging.info(f'{total_tokens}')
def basic_request(self, prompt: str, **kwargs):
raw_kwargs = kwargs
kwargs = {**self.kwargs, **kwargs}
if self.model_type == "chat":
# caching mechanism requires hashable kwargs
kwargs["messages"] = [{"role": "user", "content": prompt}]
kwargs = {"stringify_request": json.dumps(kwargs)}
response = chat_request(**kwargs)
else:
kwargs["prompt"] = prompt
response = completions_request(**kwargs)
history = {
"prompt": prompt,
"response": response,
"kwargs": kwargs,
"raw_kwargs": raw_kwargs,
}
self.history.append(history)
return response
@backoff.on_exception(
backoff.expo,
ERRORS,
max_time=1000,
on_backoff=backoff_hdlr,
)
def request(self, prompt: str, **kwargs):
"""Handles retreival of GPT-3 completions whilst handling rate limiting and caching."""
if "model_type" in kwargs:
del kwargs["model_type"]
return self.basic_request(prompt, **kwargs)
def _get_choice_text(self, choice: dict[str, Any]) -> str:
if self.model_type == "chat":
return choice["message"]["content"]
return choice["text"]
def __call__(
self,
prompt: str,
only_completed: bool = True,
return_sorted: bool = False,
**kwargs,
) -> list[dict[str, Any]]:
"""Retrieves completions from GPT-3.
Args:
prompt (str): prompt to send to GPT-3
only_completed (bool, optional): return only completed responses and ignores completion due to length. Defaults to True.
return_sorted (bool, optional): sort the completion choices using the returned probabilities. Defaults to False.
Returns:
list[dict[str, Any]]: list of completion choices
"""
assert only_completed, "for now"
assert return_sorted is False, "for now"
# if kwargs.get("n", 1) > 1:
# if self.model_type == "chat":
# kwargs = {**kwargs}
# else:
# kwargs = {**kwargs, "logprobs": 5}
response = self.request(prompt, **kwargs)
if dsp.settings.log_openai_usage:
self.log_usage(response)
choices = response["choices"]
completed_choices = [c for c in choices if c["finish_reason"] != "length"]
if only_completed and len(completed_choices):
choices = completed_choices
completions = [self._get_choice_text(c) for c in choices]
if return_sorted and kwargs.get("n", 1) > 1:
scored_completions = []
for c in choices:
tokens, logprobs = (
c["logprobs"]["tokens"],
c["logprobs"]["token_logprobs"],
)
if "<|endoftext|>" in tokens:
index = tokens.index("<|endoftext|>") + 1
tokens, logprobs = tokens[:index], logprobs[:index]
avglog = sum(logprobs) / len(logprobs)
scored_completions.append((avglog, self._get_choice_text(c)))
scored_completions = sorted(scored_completions, reverse=True)
completions = [c for _, c in scored_completions]
return completions
@CacheMemory.cache
def cached_gpt3_request_v2(**kwargs):
return openai.Completion.create(**kwargs)
@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def cached_gpt3_request_v2_wrapped(**kwargs):
return cached_gpt3_request_v2(**kwargs)
@CacheMemory.cache
def _cached_gpt3_turbo_request_v2(**kwargs) -> OpenAIObject:
if "stringify_request" in kwargs:
kwargs = json.loads(kwargs["stringify_request"])
return cast(OpenAIObject, openai.ChatCompletion.create(**kwargs))
@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def _cached_gpt3_turbo_request_v2_wrapped(**kwargs) -> OpenAIObject:
return _cached_gpt3_turbo_request_v2(**kwargs)
@CacheMemory.cache
def v1_cached_gpt3_request_v2(**kwargs):
return openai.completions.create(**kwargs)
@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def v1_cached_gpt3_request_v2_wrapped(**kwargs):
return v1_cached_gpt3_request_v2(**kwargs)
@CacheMemory.cache
def v1_cached_gpt3_turbo_request_v2(**kwargs):
if "stringify_request" in kwargs:
kwargs = json.loads(kwargs["stringify_request"])
return openai.chat.completions.create(**kwargs)
@functools.lru_cache(maxsize=None if cache_turn_on else 0)
@NotebookCacheMemory.cache
def v1_cached_gpt3_turbo_request_v2_wrapped(**kwargs):
return v1_cached_gpt3_turbo_request_v2(**kwargs)
def chat_request(**kwargs):
if OPENAI_LEGACY:
return _cached_gpt3_turbo_request_v2_wrapped(**kwargs)
return v1_cached_gpt3_turbo_request_v2_wrapped(**kwargs).model_dump()
def completions_request(**kwargs):
if OPENAI_LEGACY:
return cached_gpt3_request_v2_wrapped(**kwargs)
return v1_cached_gpt3_request_v2_wrapped(**kwargs).model_dump()
|