File size: 3,285 Bytes
f5776d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import random

from datasets import load_dataset
from dspy.datasets.dataset import Dataset


class HotPotQA(Dataset):
    def __init__(self, *args, only_hard_examples=True, keep_details='dev_titles', unofficial_dev=True, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        assert only_hard_examples, "Care must be taken when adding support for easy examples." \
                                   "Dev must be all hard to match official dev, but training can be flexible."
        
        hf_official_train = load_dataset("hotpot_qa", 'fullwiki', split='train')
        hf_official_dev = load_dataset("hotpot_qa", 'fullwiki', split='validation')

        official_train = []
        for raw_example in hf_official_train:
            if raw_example['level'] == 'hard':
                if keep_details is True:
                    keys = ['id', 'question', 'answer', 'type', 'supporting_facts']
                elif keep_details == 'dev_titles':
                    keys = ['question', 'answer', 'supporting_facts']
                else:
                    keys = ['question', 'answer']

                example = {k: raw_example[k] for k in keys}
                
                if 'supporting_facts' in example:
                    example['gold_titles'] = set(example['supporting_facts']['title'])
                    del example['supporting_facts']

                official_train.append(example)

        rng = random.Random(0)
        rng.shuffle(official_train)

        self._train = official_train[:len(official_train)*75//100]

        if unofficial_dev:
            self._dev = official_train[len(official_train)*75//100:]
        else:
            self._dev = None

        for example in self._train:
            if keep_details == 'dev_titles':
                del example['gold_titles']
        
        test = []
        for raw_example in hf_official_dev:
            assert raw_example['level'] == 'hard'
            example = {k: raw_example[k] for k in ['id', 'question', 'answer', 'type', 'supporting_facts']}
            if 'supporting_facts' in example:
                example['gold_titles'] = set(example['supporting_facts']['title'])
                del example['supporting_facts']
            test.append(example)

        self._test = test


if __name__ == '__main__':
    from dsp.utils import dotdict

    data_args = dotdict(train_seed=1, train_size=16, eval_seed=2023, dev_size=200*5, test_size=0)
    dataset = HotPotQA(**data_args)

    print(dataset)
    print(dataset.train[0].question)
    print(dataset.train[15].question)

    print(len(dataset.train), len(dataset.dev), len(dataset.test))

    print(dataset.dev[0].question)
    print(dataset.dev[340].question)
    print(dataset.dev[937].question)

"""
What was the population of the city where Woodward Avenue ends in 2010?
Where did the star , who is also an executive producer, of the Mick begin her carrer? 
16 1000 0
Both London and German have seen attacks during war, there was one specific type of attack that Germany called the blitz, what did London call a similar attack?
Pre-Madonna was a collection of demos by the singer who was a leading presence during the emergence of what network?
Alan Mills composed the classic folk song that tells the story of what? 
"""