|
"""Clarifai as retriver to retrieve hits""" |
|
import os |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import List, Optional, Union |
|
|
|
import requests |
|
|
|
import dspy |
|
from dsp.utils import dotdict |
|
|
|
try: |
|
from clarifai.client.search import Search |
|
except ImportError as err: |
|
raise ImportError( |
|
"Clarifai is not installed. Install it using `pip install clarifai`" |
|
) from err |
|
|
|
|
|
class ClarifaiRM(dspy.Retrieve): |
|
""" |
|
Retrieval module uses clarifai to return the Top K relevant pasages for the given query. |
|
Assuming that you have ingested the source documents into clarifai App, where it is indexed and stored. |
|
|
|
Args: |
|
clarifai_user_id (str): Clarifai unique user_id. |
|
clarfiai_app_id (str): Clarifai App ID, where the documents are stored. |
|
clarifai_pat (str): Clarifai PAT key. |
|
k (int): Top K documents to retrieve. |
|
|
|
Examples: |
|
TODO |
|
""" |
|
|
|
def __init__( |
|
self, |
|
clarifai_user_id: str, |
|
clarfiai_app_id: str, |
|
clarifai_pat: Optional[str] = None, |
|
k: int = 3, |
|
): |
|
self.app_id = clarfiai_app_id |
|
self.user_id = clarifai_user_id |
|
self.pat = ( |
|
clarifai_pat if clarifai_pat is not None else os.environ["CLARIFAI_PAT"] |
|
) |
|
self.k = k |
|
self.clarifai_search = Search( |
|
user_id=self.user_id, app_id=self.app_id, top_k=k, pat=self.pat |
|
) |
|
super().__init__(k=k) |
|
|
|
def retrieve_hits(self, hits): |
|
header = {"Authorization": f"Key {self.pat}"} |
|
request = requests.get(hits.input.data.text.url, headers=header) |
|
request.encoding = request.apparent_encoding |
|
requested_text = request.text |
|
return requested_text |
|
|
|
def forward( |
|
self, query_or_queries: Union[str, List[str]], k: Optional[int] = None |
|
) -> dspy.Prediction: |
|
"""Uses clarifai-python SDK search function and retrieves top_k similar passages for given query, |
|
Args: |
|
query_or_queries : single query or list of queries |
|
k : Top K relevant documents to return |
|
|
|
Returns: |
|
passages in format of dotdict |
|
|
|
Examples: |
|
Below is a code snippet that shows how to use Marqo as the default retriver: |
|
```python |
|
import clarifai |
|
llm = dspy.Clarifai(model=MODEL_URL, api_key="YOUR CLARIFAI_PAT") |
|
retriever_model = ClarifaiRM(clarifai_user_id="USER_ID", clarfiai_app_id="APP_ID", clarifai_pat="YOUR CLARIFAI_PAT") |
|
dspy.settings.configure(lm=llm, rm=retriever_model) |
|
``` |
|
""" |
|
queries = ( |
|
[query_or_queries] |
|
if isinstance(query_or_queries, str) |
|
else query_or_queries |
|
) |
|
passages = [] |
|
queries = [q for q in queries if q] |
|
|
|
for query in queries: |
|
search_response = self.clarifai_search.query(ranks=[{"text_raw": query}]) |
|
|
|
|
|
hits = [hit for data in search_response for hit in data.hits] |
|
with ThreadPoolExecutor(max_workers=10) as executor: |
|
results = list(executor.map(self.retrieve_hits, hits)) |
|
passages.extend(dotdict({"long_text": d}) for d in results) |
|
|
|
return passages |
|
|