Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter | |
| from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
| from langchain.vectorstores import FAISS, Chroma | |
| from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models. | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from htmlTemplates import css, bot_template, user_template | |
| from langchain.llms import HuggingFaceHub, LlamaCpp,CTransformers # For loading transformer models. | |
| from langchain.document_loaders import PyPDFLoader | |
| from tempfile import NamedTemporaryFile | |
| def get_pdf_text(pdf_docs): | |
| # text = '' | |
| # pdf_file_ = open(pdf_docs,'rb') | |
| # text = "example hofjin" | |
| # for page in pdf_reader.pages: | |
| # text += page.extract_text() | |
| # return text | |
| with NamedTemporaryFile() as temp_file: | |
| temp_file.write(pdf_docs.getvalue()) | |
| temp_file.seek(0) | |
| pdf_loader = PyPDFLoader(temp_file.name) | |
| # print('pdf_loader = ', pdf_loader) | |
| pdf_doc = pdf_loader.load() | |
| # print('pdf_doc = ',pdf_doc) | |
| return pdf_doc | |
| def get_text_chunks(documents): | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size = 1000, | |
| chunk_overlap = 200, | |
| length_function= len | |
| ) | |
| # text_splitter = CharacterTextSplitter( | |
| # separator="\n", | |
| # chunk_size=10f00, | |
| # chunk_overlap=200, | |
| # length_function=len | |
| # ) | |
| documents = text_splitter.split_documents(documents) | |
| print('documents = ', documents) | |
| return documents | |
| def get_vectorstore(text_chunks): | |
| # Load the desired embeddings model. | |
| embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2', | |
| model_kwargs={'device': 'cpu'}) | |
| print('embeddings = ', embeddings) | |
| # embeddings = OpenAIEmbeddings()sentence-transformers/all-MiniLM-L6-v2 | |
| # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", | |
| # model_kwargs={'device':'cpu'}) | |
| vectorstore = FAISS.from_documents(texts=text_chunks, embedding=embeddings) | |
| # vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings) | |
| return vectorstore | |
| def get_conversation_chain(vectorstore): | |
| model_path = 'llama-2-7b-chat.Q2_K.gguf' | |
| # llm = ChatOpenAI() | |
| # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
| config = {'max_new_tokens': 2048} | |
| # llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config) | |
| llm = LlamaCpp(model_path=model_path, | |
| input={"temperature": 0.75, "max_length": 2000, "top_p": 1}, | |
| verbose=True, ) | |
| memory = ConversationBufferMemory( | |
| memory_key='chat_history', return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| retriever=vectorstore.as_retriever(), | |
| memory=memory | |
| ) | |
| return conversation_chain | |
| def handle_userinput(user_question): | |
| response = st.session_state.conversation({'question': user_question}) | |
| st.session_state.chat_history = response['chat_history'] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| if i % 2 == 0: | |
| st.write(user_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| else: | |
| st.write(bot_template.replace( | |
| "{{MSG}}", message.content), unsafe_allow_html=True) | |
| def get_text_file(docs): | |
| text = docs.read().decode("utf-8") | |
| return text | |
| def get_csv_file(docs): | |
| import pandas as pd | |
| text = '' | |
| data = pd.read_csv(docs) | |
| for index, row in data.iterrows(): | |
| item_name = row[0] | |
| row_text = item_name | |
| for col_name in data.columns[1:]: | |
| row_text += '{} is {} '.format(col_name, row[col_name]) | |
| text += row_text + '\n' | |
| return text | |
| def get_json_file(docs): | |
| import json | |
| text = '' | |
| # with open(docs, 'r') as f: | |
| json_data = json.load(docs) | |
| for f_key, f_value in json_data.items(): | |
| for s_value in f_value: | |
| text += str(f_key) + str(s_value) | |
| text += '\n' | |
| #print(text) | |
| return text | |
| def get_hwp_file(docs): | |
| pass | |
| def get_docs_file(docs): | |
| pass | |
| def main(): | |
| load_dotenv() | |
| st.set_page_config(page_title="Chat with multiple PDFs", | |
| page_icon=":books:") | |
| st.write(css, unsafe_allow_html=True) | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| st.header("Chat with multiple PDFs :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| handle_userinput(user_question) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| docs = st.file_uploader( | |
| "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # get pdf text | |
| doc_list = [] | |
| for file in docs: | |
| print('file - type : ', file.type) | |
| if file.type == 'text/plain': | |
| #file is .txt | |
| raw_text += get_text_file(file) | |
| elif file.type in ['application/octet-stream', 'application/pdf']: | |
| #file is .pdf | |
| doc_list.append(get_pdf_text(file)) | |
| elif file.type == 'text/csv': | |
| #file is .csv | |
| raw_text += get_csv_file(file) | |
| elif file.type == 'application/json': | |
| # file is .json | |
| raw_text += get_json_file(file) | |
| elif file.type == 'application/x-hwp': | |
| # file is .hwp | |
| raw_text += get_hwp_file(file) | |
| elif file.type == 'application/vnd.openxmlformats-officedocument.wordprocessingml.document': | |
| # file is .docs | |
| raw_text += get_docs_file(file) | |
| # get the text chunks | |
| text_chunks = get_text_chunks(doc_list) | |
| # create vector store | |
| vectorstore = get_vectorstore(text_chunks) | |
| # create conversation chain | |
| st.session_state.conversation = get_conversation_chain( | |
| vectorstore) | |
| if __name__ == '__main__': | |
| main() | |