Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
| 5 |
from langchain.llms import CTransformers # For loading transformer models.
|
| 6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
| 7 |
-
from langchain.vectorstores import FAISS
|
| 8 |
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
| 9 |
from langchain.chat_models import ChatOpenAI
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
|
@@ -21,12 +21,17 @@ def get_pdf_text(pdf_docs):
|
|
| 21 |
|
| 22 |
|
| 23 |
def get_text_chunks(text):
|
| 24 |
-
text_splitter =
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
length_function=len
|
| 29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
chunks = text_splitter.split_text(text)
|
| 31 |
return chunks
|
| 32 |
|
|
@@ -37,14 +42,17 @@ def get_vectorstore(text_chunks):
|
|
| 37 |
model_kwargs={'device': 'cpu'})
|
| 38 |
# embeddings = OpenAIEmbeddings()
|
| 39 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
| 40 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
|
|
|
|
|
| 41 |
return vectorstore
|
| 42 |
|
| 43 |
|
| 44 |
def get_conversation_chain(vectorstore):
|
| 45 |
# llm = ChatOpenAI()
|
| 46 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
| 47 |
-
|
|
|
|
| 48 |
memory = ConversationBufferMemory(
|
| 49 |
memory_key='chat_history', return_messages=True)
|
| 50 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
from PyPDF2 import PdfReader
|
| 4 |
+
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
|
| 5 |
from langchain.llms import CTransformers # For loading transformer models.
|
| 6 |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
| 7 |
+
from langchain.vectorstores import FAISS, Chroma
|
| 8 |
from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models.
|
| 9 |
from langchain.chat_models import ChatOpenAI
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def get_text_chunks(text):
|
| 24 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 25 |
+
chunk_size = 300,
|
| 26 |
+
chunk_overlap = 20,
|
| 27 |
+
length_function= len
|
|
|
|
| 28 |
)
|
| 29 |
+
# text_splitter = CharacterTextSplitter(
|
| 30 |
+
# separator="\n",
|
| 31 |
+
# chunk_size=1000,
|
| 32 |
+
# chunk_overlap=200,
|
| 33 |
+
# length_function=len
|
| 34 |
+
# )
|
| 35 |
chunks = text_splitter.split_text(text)
|
| 36 |
return chunks
|
| 37 |
|
|
|
|
| 42 |
model_kwargs={'device': 'cpu'})
|
| 43 |
# embeddings = OpenAIEmbeddings()
|
| 44 |
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
| 45 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
| 46 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)
|
| 47 |
+
|
| 48 |
return vectorstore
|
| 49 |
|
| 50 |
|
| 51 |
def get_conversation_chain(vectorstore):
|
| 52 |
# llm = ChatOpenAI()
|
| 53 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
| 54 |
+
config = {'max_new_tokens': 2048}
|
| 55 |
+
llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q2_K.bin", model_type="llama", config=config)
|
| 56 |
memory = ConversationBufferMemory(
|
| 57 |
memory_key='chat_history', return_messages=True)
|
| 58 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|