Spaces:
Running
Running
| import os | |
| import sys | |
| __dir__ = os.path.dirname(os.path.abspath(__file__)) | |
| sys.path.append(__dir__) | |
| sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
| import math | |
| import time | |
| import cv2 | |
| import numpy as np | |
| from openrec.postprocess import build_post_process | |
| from openrec.preprocess import create_operators, transform | |
| from tools.engine import Config | |
| from tools.infer.onnx_engine import ONNXEngine | |
| from tools.infer.utility import check_gpu, parse_args | |
| from tools.utils.logging import get_logger | |
| from tools.utils.utility import check_and_read, get_image_file_list | |
| logger = get_logger() | |
| class TextRecognizer(ONNXEngine): | |
| def __init__(self, args): | |
| if args.rec_model_dir is None or not os.path.exists( | |
| args.rec_model_dir): | |
| raise Exception( | |
| f'args.rec_model_dir is set to {args.rec_model_dir}, but it is not exists' | |
| ) | |
| onnx_path = os.path.join(args.rec_model_dir, 'model.onnx') | |
| config_path = os.path.join(args.rec_model_dir, 'config.yaml') | |
| super(TextRecognizer, self).__init__(onnx_path, args.use_gpu) | |
| self.rec_image_shape = [ | |
| int(v) for v in args.rec_image_shape.split(',') | |
| ] | |
| self.rec_batch_num = args.rec_batch_num | |
| self.rec_algorithm = args.rec_algorithm | |
| cfg = Config(config_path).cfg | |
| self.ops = create_operators(cfg['Transforms'][1:]) | |
| self.postprocess_op = build_post_process(cfg['PostProcess']) | |
| def resize_norm_img(self, img, max_wh_ratio): | |
| imgC, imgH, imgW = self.rec_image_shape | |
| assert imgC == img.shape[2] | |
| imgW = int((imgH * max_wh_ratio)) | |
| h, w = img.shape[:2] | |
| ratio = w / float(h) | |
| if math.ceil(imgH * ratio) > imgW: | |
| resized_w = imgW | |
| else: | |
| resized_w = int(math.ceil(imgH * ratio)) | |
| resized_image = cv2.resize(img, (resized_w, imgH)) | |
| resized_image = resized_image.astype('float32') | |
| resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
| resized_image -= 0.5 | |
| resized_image /= 0.5 | |
| padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
| padding_im[:, :, 0:resized_w] = resized_image | |
| return padding_im | |
| def __call__(self, img_list): | |
| img_num = len(img_list) | |
| # Calculate the aspect ratio of all text bars | |
| width_list = [] | |
| for img in img_list: | |
| width_list.append(img.shape[1] / float(img.shape[0])) | |
| # Sorting can speed up the recognition process | |
| indices = np.argsort(np.array(width_list)) | |
| rec_res = [['', 0.0]] * img_num | |
| batch_num = self.rec_batch_num | |
| st = time.time() | |
| for beg_img_no in range(0, img_num, batch_num): | |
| end_img_no = min(img_num, beg_img_no + batch_num) | |
| norm_img_batch = [] | |
| imgC, imgH, imgW = self.rec_image_shape[:3] | |
| max_wh_ratio = imgW / imgH | |
| # max_wh_ratio = 0 | |
| for ino in range(beg_img_no, end_img_no): | |
| h, w = img_list[indices[ino]].shape[0:2] | |
| wh_ratio = w * 1.0 / h | |
| max_wh_ratio = max(max_wh_ratio, wh_ratio) | |
| for ino in range(beg_img_no, end_img_no): | |
| if self.rec_algorithm == 'nrtr': | |
| norm_img = transform({'image': img_list[indices[ino]]}, | |
| self.ops)[0] | |
| else: | |
| norm_img = self.resize_norm_img(img_list[indices[ino]], | |
| max_wh_ratio) | |
| norm_img = norm_img[np.newaxis, :] | |
| norm_img_batch.append(norm_img) | |
| norm_img_batch = np.concatenate(norm_img_batch) | |
| norm_img_batch = norm_img_batch.copy() | |
| preds = self.run(norm_img_batch) | |
| if len(preds) == 1: | |
| preds = preds[0] | |
| rec_result = self.postprocess_op({'res': preds}) | |
| for rno in range(len(rec_result)): | |
| rec_res[indices[beg_img_no + rno]] = rec_result[rno] | |
| return rec_res, time.time() - st | |
| def main(args): | |
| args.use_gpu = check_gpu(args.use_gpu) | |
| image_file_list = get_image_file_list(args.image_dir) | |
| text_recognizer = TextRecognizer(args) | |
| valid_image_file_list = [] | |
| img_list = [] | |
| # warmup 2 times | |
| if args.warmup: | |
| img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8) | |
| for i in range(2): | |
| text_recognizer([img] * int(args.rec_batch_num)) | |
| for image_file in image_file_list: | |
| img, flag, _ = check_and_read(image_file) | |
| if not flag: | |
| img = cv2.imread(image_file) | |
| if img is None: | |
| logger.info(f'error in loading image:{image_file}') | |
| continue | |
| valid_image_file_list.append(image_file) | |
| img_list.append(img) | |
| rec_res, _ = text_recognizer(img_list) | |
| for ino in range(len(img_list)): | |
| logger.info(f'result of {valid_image_file_list[ino]}:{rec_res[ino]}') | |
| if __name__ == '__main__': | |
| main(parse_args()) | |