Spaces:
Running
Running
| import cv2 | |
| import math | |
| import numpy as np | |
| from itertools import groupby | |
| from skimage.morphology._skeletonize import thin | |
| def get_dict(character_dict_path): | |
| character_str = "" | |
| with open(character_dict_path, "rb") as fin: | |
| lines = fin.readlines() | |
| for line in lines: | |
| line = line.decode("utf-8").strip("\n").strip("\r\n") | |
| character_str += line | |
| dict_character = list(character_str) | |
| return dict_character | |
| def softmax(logits): | |
| """ | |
| logits: N x d | |
| """ | |
| max_value = np.max(logits, axis=1, keepdims=True) | |
| exp = np.exp(logits - max_value) | |
| exp_sum = np.sum(exp, axis=1, keepdims=True) | |
| dist = exp / exp_sum | |
| return dist | |
| def get_keep_pos_idxs(labels, remove_blank=None): | |
| """ | |
| Remove duplicate and get pos idxs of keep items. | |
| The value of keep_blank should be [None, 95]. | |
| """ | |
| duplicate_len_list = [] | |
| keep_pos_idx_list = [] | |
| keep_char_idx_list = [] | |
| for k, v_ in groupby(labels): | |
| current_len = len(list(v_)) | |
| if k != remove_blank: | |
| current_idx = int(sum(duplicate_len_list) + current_len // 2) | |
| keep_pos_idx_list.append(current_idx) | |
| keep_char_idx_list.append(k) | |
| duplicate_len_list.append(current_len) | |
| return keep_char_idx_list, keep_pos_idx_list | |
| def remove_blank(labels, blank=0): | |
| new_labels = [x for x in labels if x != blank] | |
| return new_labels | |
| def insert_blank(labels, blank=0): | |
| new_labels = [blank] | |
| for l in labels: | |
| new_labels += [l, blank] | |
| return new_labels | |
| def ctc_greedy_decoder(probs_seq, blank=95, keep_blank_in_idxs=True): | |
| """ | |
| CTC greedy (best path) decoder. | |
| """ | |
| raw_str = np.argmax(np.array(probs_seq), axis=1) | |
| remove_blank_in_pos = None if keep_blank_in_idxs else blank | |
| dedup_str, keep_idx_list = get_keep_pos_idxs( | |
| raw_str, remove_blank=remove_blank_in_pos) | |
| dst_str = remove_blank(dedup_str, blank=blank) | |
| return dst_str, keep_idx_list | |
| def instance_ctc_greedy_decoder(gather_info, | |
| logits_map, | |
| pts_num=4, | |
| point_gather_mode=None): | |
| _, _, C = logits_map.shape | |
| if point_gather_mode == "align": | |
| insert_num = 0 | |
| gather_info = np.array(gather_info) | |
| length = len(gather_info) - 1 | |
| for index in range(length): | |
| stride_y = np.abs(gather_info[index + insert_num][0] - gather_info[ | |
| index + 1 + insert_num][0]) | |
| stride_x = np.abs(gather_info[index + insert_num][1] - gather_info[ | |
| index + 1 + insert_num][1]) | |
| max_points = int(max(stride_x, stride_y)) | |
| stride = (gather_info[index + insert_num] - | |
| gather_info[index + 1 + insert_num]) / (max_points) | |
| insert_num_temp = max_points - 1 | |
| for i in range(int(insert_num_temp)): | |
| insert_value = gather_info[index + insert_num] - (i + 1 | |
| ) * stride | |
| insert_index = index + i + 1 + insert_num | |
| gather_info = np.insert( | |
| gather_info, insert_index, insert_value, axis=0) | |
| insert_num += insert_num_temp | |
| gather_info = gather_info.tolist() | |
| else: | |
| pass | |
| ys, xs = zip(*gather_info) | |
| logits_seq = logits_map[list(ys), list(xs)] | |
| probs_seq = logits_seq | |
| labels = np.argmax(probs_seq, axis=1) | |
| dst_str = [k for k, v_ in groupby(labels) if k != C - 1] | |
| detal = len(gather_info) // (pts_num - 1) | |
| keep_idx_list = [0] + [detal * (i + 1) for i in range(pts_num - 2)] + [-1] | |
| keep_gather_list = [gather_info[idx] for idx in keep_idx_list] | |
| return dst_str, keep_gather_list | |
| def ctc_decoder_for_image(gather_info_list, | |
| logits_map, | |
| Lexicon_Table, | |
| pts_num=6, | |
| point_gather_mode=None): | |
| """ | |
| CTC decoder using multiple processes. | |
| """ | |
| decoder_str = [] | |
| decoder_xys = [] | |
| for gather_info in gather_info_list: | |
| if len(gather_info) < pts_num: | |
| continue | |
| dst_str, xys_list = instance_ctc_greedy_decoder( | |
| gather_info, | |
| logits_map, | |
| pts_num=pts_num, | |
| point_gather_mode=point_gather_mode, ) | |
| dst_str_readable = "".join([Lexicon_Table[idx] for idx in dst_str]) | |
| if len(dst_str_readable) < 2: | |
| continue | |
| decoder_str.append(dst_str_readable) | |
| decoder_xys.append(xys_list) | |
| return decoder_str, decoder_xys | |
| def sort_with_direction(pos_list, f_direction): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[y, x], [y, x], [y, x] ...] | |
| """ | |
| def sort_part_with_direction(pos_list, point_direction): | |
| pos_list = np.array(pos_list).reshape(-1, 2) | |
| point_direction = np.array(point_direction).reshape(-1, 2) | |
| average_direction = np.mean(point_direction, axis=0, keepdims=True) | |
| pos_proj_leng = np.sum(pos_list * average_direction, axis=1) | |
| sorted_list = pos_list[np.argsort(pos_proj_leng)].tolist() | |
| sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist() | |
| return sorted_list, sorted_direction | |
| pos_list = np.array(pos_list).reshape(-1, 2) | |
| point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y | |
| point_direction = point_direction[:, ::-1] # x, y -> y, x | |
| sorted_point, sorted_direction = sort_part_with_direction(pos_list, | |
| point_direction) | |
| point_num = len(sorted_point) | |
| if point_num >= 16: | |
| middle_num = point_num // 2 | |
| first_part_point = sorted_point[:middle_num] | |
| first_point_direction = sorted_direction[:middle_num] | |
| sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction( | |
| first_part_point, first_point_direction) | |
| last_part_point = sorted_point[middle_num:] | |
| last_point_direction = sorted_direction[middle_num:] | |
| sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction( | |
| last_part_point, last_point_direction) | |
| sorted_point = sorted_fist_part_point + sorted_last_part_point | |
| sorted_direction = sorted_fist_part_direction + sorted_last_part_direction | |
| return sorted_point, np.array(sorted_direction) | |
| def add_id(pos_list, image_id=0): | |
| """ | |
| Add id for gather feature, for inference. | |
| """ | |
| new_list = [] | |
| for item in pos_list: | |
| new_list.append((image_id, item[0], item[1])) | |
| return new_list | |
| def sort_and_expand_with_direction(pos_list, f_direction): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[y, x], [y, x], [y, x] ...] | |
| """ | |
| h, w, _ = f_direction.shape | |
| sorted_list, point_direction = sort_with_direction(pos_list, f_direction) | |
| point_num = len(sorted_list) | |
| sub_direction_len = max(point_num // 3, 2) | |
| left_direction = point_direction[:sub_direction_len, :] | |
| right_dirction = point_direction[point_num - sub_direction_len:, :] | |
| left_average_direction = -np.mean(left_direction, axis=0, keepdims=True) | |
| left_average_len = np.linalg.norm(left_average_direction) | |
| left_start = np.array(sorted_list[0]) | |
| left_step = left_average_direction / (left_average_len + 1e-6) | |
| right_average_direction = np.mean(right_dirction, axis=0, keepdims=True) | |
| right_average_len = np.linalg.norm(right_average_direction) | |
| right_step = right_average_direction / (right_average_len + 1e-6) | |
| right_start = np.array(sorted_list[-1]) | |
| append_num = max( | |
| int((left_average_len + right_average_len) / 2.0 * 0.15), 1) | |
| left_list = [] | |
| right_list = [] | |
| for i in range(append_num): | |
| ly, lx = (np.round(left_start + left_step * (i + 1)).flatten() | |
| .astype("int32").tolist()) | |
| if ly < h and lx < w and (ly, lx) not in left_list: | |
| left_list.append((ly, lx)) | |
| ry, rx = (np.round(right_start + right_step * (i + 1)).flatten() | |
| .astype("int32").tolist()) | |
| if ry < h and rx < w and (ry, rx) not in right_list: | |
| right_list.append((ry, rx)) | |
| all_list = left_list[::-1] + sorted_list + right_list | |
| return all_list | |
| def sort_and_expand_with_direction_v2(pos_list, f_direction, binary_tcl_map): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[y, x], [y, x], [y, x] ...] | |
| binary_tcl_map: h x w | |
| """ | |
| h, w, _ = f_direction.shape | |
| sorted_list, point_direction = sort_with_direction(pos_list, f_direction) | |
| point_num = len(sorted_list) | |
| sub_direction_len = max(point_num // 3, 2) | |
| left_direction = point_direction[:sub_direction_len, :] | |
| right_dirction = point_direction[point_num - sub_direction_len:, :] | |
| left_average_direction = -np.mean(left_direction, axis=0, keepdims=True) | |
| left_average_len = np.linalg.norm(left_average_direction) | |
| left_start = np.array(sorted_list[0]) | |
| left_step = left_average_direction / (left_average_len + 1e-6) | |
| right_average_direction = np.mean(right_dirction, axis=0, keepdims=True) | |
| right_average_len = np.linalg.norm(right_average_direction) | |
| right_step = right_average_direction / (right_average_len + 1e-6) | |
| right_start = np.array(sorted_list[-1]) | |
| append_num = max( | |
| int((left_average_len + right_average_len) / 2.0 * 0.15), 1) | |
| max_append_num = 2 * append_num | |
| left_list = [] | |
| right_list = [] | |
| for i in range(max_append_num): | |
| ly, lx = (np.round(left_start + left_step * (i + 1)).flatten() | |
| .astype("int32").tolist()) | |
| if ly < h and lx < w and (ly, lx) not in left_list: | |
| if binary_tcl_map[ly, lx] > 0.5: | |
| left_list.append((ly, lx)) | |
| else: | |
| break | |
| for i in range(max_append_num): | |
| ry, rx = (np.round(right_start + right_step * (i + 1)).flatten() | |
| .astype("int32").tolist()) | |
| if ry < h and rx < w and (ry, rx) not in right_list: | |
| if binary_tcl_map[ry, rx] > 0.5: | |
| right_list.append((ry, rx)) | |
| else: | |
| break | |
| all_list = left_list[::-1] + sorted_list + right_list | |
| return all_list | |
| def point_pair2poly(point_pair_list): | |
| """ | |
| Transfer vertical point_pairs into poly point in clockwise. | |
| """ | |
| point_num = len(point_pair_list) * 2 | |
| point_list = [0] * point_num | |
| for idx, point_pair in enumerate(point_pair_list): | |
| point_list[idx] = point_pair[0] | |
| point_list[point_num - 1 - idx] = point_pair[1] | |
| return np.array(point_list).reshape(-1, 2) | |
| def shrink_quad_along_width(quad, begin_width_ratio=0.0, end_width_ratio=1.0): | |
| ratio_pair = np.array( | |
| [[begin_width_ratio], [end_width_ratio]], dtype=np.float32) | |
| p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair | |
| p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair | |
| return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]]) | |
| def expand_poly_along_width(poly, shrink_ratio_of_width=0.3): | |
| """ | |
| expand poly along width. | |
| """ | |
| point_num = poly.shape[0] | |
| left_quad = np.array( | |
| [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32) | |
| left_ratio = (-shrink_ratio_of_width * | |
| np.linalg.norm(left_quad[0] - left_quad[3]) / | |
| (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)) | |
| left_quad_expand = shrink_quad_along_width(left_quad, left_ratio, 1.0) | |
| right_quad = np.array( | |
| [ | |
| poly[point_num // 2 - 2], | |
| poly[point_num // 2 - 1], | |
| poly[point_num // 2], | |
| poly[point_num // 2 + 1], | |
| ], | |
| dtype=np.float32, ) | |
| right_ratio = 1.0 + shrink_ratio_of_width * np.linalg.norm(right_quad[ | |
| 0] - right_quad[3]) / (np.linalg.norm(right_quad[0] - right_quad[1]) + | |
| 1e-6) | |
| right_quad_expand = shrink_quad_along_width(right_quad, 0.0, right_ratio) | |
| poly[0] = left_quad_expand[0] | |
| poly[-1] = left_quad_expand[-1] | |
| poly[point_num // 2 - 1] = right_quad_expand[1] | |
| poly[point_num // 2] = right_quad_expand[2] | |
| return poly | |
| def restore_poly(instance_yxs_list, seq_strs, p_border, ratio_w, ratio_h, src_w, | |
| src_h, valid_set): | |
| poly_list = [] | |
| keep_str_list = [] | |
| for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs): | |
| if len(keep_str) < 2: | |
| print("--> too short, {}".format(keep_str)) | |
| continue | |
| offset_expand = 1.0 | |
| if valid_set == "totaltext": | |
| offset_expand = 1.2 | |
| point_pair_list = [] | |
| for y, x in yx_center_line: | |
| offset = p_border[:, y, x].reshape(2, 2) * offset_expand | |
| ori_yx = np.array([y, x], dtype=np.float32) | |
| point_pair = ((ori_yx + offset)[:, ::-1] * 4.0 / | |
| np.array([ratio_w, ratio_h]).reshape(-1, 2)) | |
| point_pair_list.append(point_pair) | |
| detected_poly = point_pair2poly(point_pair_list) | |
| detected_poly = expand_poly_along_width( | |
| detected_poly, shrink_ratio_of_width=0.2) | |
| detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w) | |
| detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h) | |
| keep_str_list.append(keep_str) | |
| if valid_set == "partvgg": | |
| middle_point = len(detected_poly) // 2 | |
| detected_poly = detected_poly[ | |
| [0, middle_point - 1, middle_point, -1], :] | |
| poly_list.append(detected_poly) | |
| elif valid_set == "totaltext": | |
| poly_list.append(detected_poly) | |
| else: | |
| print("--> Not supported format.") | |
| exit(-1) | |
| return poly_list, keep_str_list | |
| def generate_pivot_list_fast( | |
| p_score, | |
| p_char_maps, | |
| f_direction, | |
| Lexicon_Table, | |
| score_thresh=0.5, | |
| point_gather_mode=None, ): | |
| """ | |
| return center point and end point of TCL instance; filter with the char maps; | |
| """ | |
| p_score = p_score[0] | |
| f_direction = f_direction.transpose(1, 2, 0) | |
| p_tcl_map = (p_score > score_thresh) * 1.0 | |
| skeleton_map = thin(p_tcl_map.astype(np.uint8)) | |
| instance_count, instance_label_map = cv2.connectedComponents( | |
| skeleton_map.astype(np.uint8), connectivity=8) | |
| # get TCL Instance | |
| all_pos_yxs = [] | |
| if instance_count > 0: | |
| for instance_id in range(1, instance_count): | |
| pos_list = [] | |
| ys, xs = np.where(instance_label_map == instance_id) | |
| pos_list = list(zip(ys, xs)) | |
| if len(pos_list) < 3: | |
| continue | |
| pos_list_sorted = sort_and_expand_with_direction_v2( | |
| pos_list, f_direction, p_tcl_map) | |
| all_pos_yxs.append(pos_list_sorted) | |
| p_char_maps = p_char_maps.transpose([1, 2, 0]) | |
| decoded_str, keep_yxs_list = ctc_decoder_for_image( | |
| all_pos_yxs, | |
| logits_map=p_char_maps, | |
| Lexicon_Table=Lexicon_Table, | |
| point_gather_mode=point_gather_mode, ) | |
| return keep_yxs_list, decoded_str | |
| def extract_main_direction(pos_list, f_direction): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[y, x], [y, x], [y, x] ...] | |
| """ | |
| pos_list = np.array(pos_list) | |
| point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] | |
| point_direction = point_direction[:, ::-1] # x, y -> y, x | |
| average_direction = np.mean(point_direction, axis=0, keepdims=True) | |
| average_direction = average_direction / ( | |
| np.linalg.norm(average_direction) + 1e-6) | |
| return average_direction | |
| def sort_by_direction_with_image_id_deprecated(pos_list, f_direction): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[id, y, x], [id, y, x], [id, y, x] ...] | |
| """ | |
| pos_list_full = np.array(pos_list).reshape(-1, 3) | |
| pos_list = pos_list_full[:, 1:] | |
| point_direction = f_direction[pos_list[:, 0], pos_list[:, 1]] # x, y | |
| point_direction = point_direction[:, ::-1] # x, y -> y, x | |
| average_direction = np.mean(point_direction, axis=0, keepdims=True) | |
| pos_proj_leng = np.sum(pos_list * average_direction, axis=1) | |
| sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist() | |
| return sorted_list | |
| def sort_by_direction_with_image_id(pos_list, f_direction): | |
| """ | |
| f_direction: h x w x 2 | |
| pos_list: [[y, x], [y, x], [y, x] ...] | |
| """ | |
| def sort_part_with_direction(pos_list_full, point_direction): | |
| pos_list_full = np.array(pos_list_full).reshape(-1, 3) | |
| pos_list = pos_list_full[:, 1:] | |
| point_direction = np.array(point_direction).reshape(-1, 2) | |
| average_direction = np.mean(point_direction, axis=0, keepdims=True) | |
| pos_proj_leng = np.sum(pos_list * average_direction, axis=1) | |
| sorted_list = pos_list_full[np.argsort(pos_proj_leng)].tolist() | |
| sorted_direction = point_direction[np.argsort(pos_proj_leng)].tolist() | |
| return sorted_list, sorted_direction | |
| pos_list = np.array(pos_list).reshape(-1, 3) | |
| point_direction = f_direction[pos_list[:, 1], pos_list[:, 2]] # x, y | |
| point_direction = point_direction[:, ::-1] # x, y -> y, x | |
| sorted_point, sorted_direction = sort_part_with_direction(pos_list, | |
| point_direction) | |
| point_num = len(sorted_point) | |
| if point_num >= 16: | |
| middle_num = point_num // 2 | |
| first_part_point = sorted_point[:middle_num] | |
| first_point_direction = sorted_direction[:middle_num] | |
| sorted_fist_part_point, sorted_fist_part_direction = sort_part_with_direction( | |
| first_part_point, first_point_direction) | |
| last_part_point = sorted_point[middle_num:] | |
| last_point_direction = sorted_direction[middle_num:] | |
| sorted_last_part_point, sorted_last_part_direction = sort_part_with_direction( | |
| last_part_point, last_point_direction) | |
| sorted_point = sorted_fist_part_point + sorted_last_part_point | |
| sorted_direction = sorted_fist_part_direction + sorted_last_part_direction | |
| return sorted_point | |